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REVIEW – IMPORTANT POINTS TO REMEMBER 

MEC 557 – FINITE ELEMENT METHOD IN SOLID MECHANICS 
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WHAT IS THE FINITE ELEMENT METHOD? 
RALEIGH-RITZ NUMERICAL SOLUTION TECHNIQUE IN APPLIED MATHEMATICS: 

  IDEA STARTED WITH VIBRATION THEORY: FOR CONTINUUM PROBLEMS WITH AN 
ENERGY, USE SHAPE FUNCTIONS TO CONVERT INFINITE DIMENSIONAL PROBLEM 
TO A DISCRETE ONE THAT CAN BE SOLVED WITH MATRIX ALGEBRA (1909) 

  BY ABOUT 1970’s PEOPLE REALIZED THAT THE APPROXIMATE ENGINEERING F.E.M. 
TECHNIQUE WAS A RALEIGH-RITZ METHOD WITH INGENIOUS SHAPE FUNCTIONS OF 
COMPACT SUPPORT 

THE REST IS THE HISTORY OF ONE OF THE GREATEST CONTRIBUTIONS OF 
MECHANICS AND APPLIED MATHEMATICS TO MODERN EGINEERING TECHNOLOGY 

  APPROACH THAT STARTED WITH LINEAR ELASTICITY WAS EXTENDED TO THE 
MOST GENERAL TYPE OF NONLINEAR, INELASTIC SOLIDS & STRUCTURES 

  METHOD IS APPLICABLE TO A WIDE CLASS OF BOUNDARY PROBLEMS BUT IS BEST 
SUITED FOR ELLIPTIC PROBLEMS  

  FINITE ELEMENTS TECHNOLOGY IS ONE OF THE MOST IMPORTANT CONTRIBUTIONS 
OF MECHANICS THAT REVOLUTIONIZED ENGINEERING TECHNOLOGY 

    

 

MEC 557 – FINITE ELEMENT METHOD IN SOLID MECHANICS 
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1.  INTRODUCTION TO THE FINITE ELEMENT METHOD USING 1-D MODELS.  

2.  CHOLESKY METHOD FOR SOLVING LINEAR SYSTEMS. 

3.  TRUSSES AND FRAMES IN 2D AND 3D. 

4.  ASSEMBLY OF STIFFNESS MATRIX & FORCE VECTOR, CONNECTIVITY 

5.  VARIATIONAL FORMULATION FOR LINEAR ELASTICITY B.V.P. 

6.  PLANE STRESS/STRAIN PROBLEMS USING CONSTANT STRAIN TRIANGLES. 

7.  ISOPARAMETRIC ELEMENTS FOR 2D PROBLEMS.  

8.  NUMERICAL INTEGRATION, GENERALIZATION TO 3D PROBLEMS. 

9.  HIGHER ORDER GRADIENT ENERGIES: BEAMS (1D) AND PLATES (2D). 

10. LOCKING PHENOMENA DUE TO CONSTRAINTS. 

11.  TIME-DEPENDENT ANALYSES, EIGENMODES. 

12. NON-LINEAR PROBLEMS – INCREMENTAL NEWTON-RAPHSON. 

13.   NON-LINEAR BEAMS (1D) & FINITE STRAIN ELASTICITY (2D). 

14.   NOTIONS OF FRACTURE IN 2D (CRACK-TIP SINGULARITIES) 

    

 

TOPICS COVERED 
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SIMPLEST CASE: 1D ELASTIC BAR EXAMPLE 

TO ILLUSTRATE ENERGY, RALEIGH-RITZ & FEM 

MEC 557 – FINITE ELEMENT METHOD IN SOLID MECHANICS 
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ONE DIMENSIONAL EXAMPLE – ENERGY METHOD 

STARTING POINT FOR FEM: use potential energy minimization 
(variational method) for the case of a non-disspative mechanics problem – 
all problems in elasticity (linear or nonlinear fall in this category) 

CLAIM: of all admissible displacement fields u(x), i.e. continuous 
functions that satisfy the essential boundary condition: u(0) = 0, the actual 
equilibrium solution minimizes the potential energy functional P (u(x)) 
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ONE DIMENSIONAL EXAMPLE – ENERGY METHOD 

VARIATIONAL FORMULATION: We must minimize potential energy 
functional P (u(x)), to find equilibrium  ueq(x) 

Raleigh-Ritz method: instead of minimizing energy in an infinite 
dimensional space, we minimize in a finite dimensional space. We use an 
approximate displacement uapp(x) – which involves a finite number of 
variables Qi (i=1, …n) – and minimize P (Q) with respect to Q.     



Page 7 MEC557 – THE FINITE ELEMENT METHOD IN SOLID & STRUCTURAL MECHANICS – REVIEW 

ONE DIMENSIONAL EXAMPLE – RALEIGH-RITZ METHOD 

 
Stiffness matrix: K,   Force vector: F,   Degrees of Freedom: Q 
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ONE DIMENSIONAL EXAMPLE – FINITE ELEMENT METHOD 

 
Easy physical interpretation of d.o.f. (degree of freedom) Qi  at node xi: due to 
its construction, uapp(xi) = Qi 
 
Shape functions Ni(x) have compact support: Ni(xi) = 1, Ni(xi-1) = Ni(xi+1) = 0. 
Compactness of support of shape function great advantage of FEM    
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FEM method: Special case of Rayleigh-Ritz! 
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ONE DIMENSIONAL EXAMPLE – SPARSE STIFFNESS MATRIX 

 
Stiffness matrix K is banded, i.e. populated about the diagonal. This structure, 
due to the compactness of shape functions, has great advantages in both 
solution time and storage requirements. For reasonable systems, we use 
Cholesky (André-Louis Cholesky X-1895 ) decomposition, for very large 
systems, iterative methods that take advantage of the sparse structure of K.  
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In element i: uapp(x) = q1N1(x) + q2N2(x) 
 
Local degree of freedom qT

e = [q1, q2] 
 
We find element contribution to global 
stiffness matrix K and force vector F  
 
 

ONE DIMENSIONAL EXAMPLE – ELEMENT STIFFNESS, FORCE 

uapp
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q1 ≡ Qi−1 q2 ≡ Qi

1

1 N1(x) 

N2(x) 0	
 1	
 2	
 i–1	
 i	
 i+1	
 n	
1	
 2	
 i–1	
 i	


element # i	


d.o.f. # i	




Page 11 MEC557 – THE FINITE ELEMENT METHOD IN SOLID & STRUCTURAL MECHANICS – REVIEW 

Finding element stiffness matrix ke and element force vector fe in the structure 

ONE DIMENSIONAL EXAMPLE – ELEMENT STIFFNESS, FORCE 
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i j

i

j

ke11 ke12

ke21 ke22

fe
1 fe

2

Assembling global stiffness matrix 
K and global force vector F from 
element stiffness matrix ke and 
element force vector fe  
 
RULE: for each element e add to 
global stiffness matrix & force 
vector the components in the 
appropriate places recalling local to 
global numbering 
 
 
1i, 2j for this 2-node element 
 
 

ONE DIMENSIONAL EXAMPLE – ASSEMBLE STIFFNESS, FORCE 
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SIMPLEST CASE: 1D ELASTIC BAR EXAMPLE 

TO ILLUSTRATE ISOPARAMETRIC MASTER ELEMENT 

MEC 557 – FINITE ELEMENT METHOD IN SOLID MECHANICS 
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ONE DIMENSIONAL EXAMPLE – MASTER ELEMENT 

It is very convenient to write shape functions in a master element with 
respect to a normalized coordinate (ξ)	


ξ = 0	
 ξ = 1	


ξ = -1	
 ξ = 0	
 ξ = 1	


i = 1 i = 2 

i = 1 i = 2 i = 3 
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ONE DIMENSIONAL EXAMPLE – ISOPARAMETRIC CASE 

Question: what do we choose for x(ξ)? 
 
Answer: (easy) same representation as for displacement! 
 
This type of parametrization that uses the same interpolation 
scheme for both the displacement and the geometric coordinates 
is called isoparametric representation and is widely used in F.E.M. 
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NEXT CASE: 2D ELASTICITY TO ILLUSTRATE THE  

FEM METHOD IN HIGHER DIMENSION PROBLEMS 

MEC 557 – FINITE ELEMENT METHOD IN SOLID MECHANICS 
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REVIEW OF SMALL STRAIN LINEAR ELASTICITY 

Solid occupies domain: V 

Domain boundary: 

Body forces: b 

Surface traction: t 

Surface normal (outward): n 

Traction prescribed on: 

Displacement prescribed on: 

Position vector: x 

 
 
 
  

n 

b 

t 

V 
x 

Energy density: W(ε) 
 
Stress-strain: 
 
(general nonlinear elastic material) 
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REVIEW OF SMALL STRAIN LINEAR ELASTICITY 



Page 19 MEC557 – THE FINITE ELEMENT METHOD IN SOLID & STRUCTURAL MECHANICS – REVIEW 

REVIEW OF SMALL STRAIN LINEAR ELASTICITY 

Linearized strain: εij    Cauchy stress: σij    Elastic moduli tensor: Lijkl  
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FEM IN 2D: CONSTANT STRAIN TRIANGLES 

 SIMPLEST 2D ELEMENT: CONSTANT STRAIN TRIANGLE 
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Element d.o.f. qe
T = [U1

1, U2
1, U1

2, U2
2, U1

3, U2
3] 

Nodal d.o.f.  Uj
I,  

bottom index: j – direction  

top index: I – node number  

FEM IN 2D: CONSTANT STRAIN TRIANGLES 
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FEM IN 2D: CONSTANT STRAIN TRIANGLES 

displacement interpolation 
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1 
1 

2 

3 

N1(x1, x2)

area A 

Shape functions NI(x1, x2) are bilinear in terms of coordinates 
  

(3 constants found from the 3 nodal conditions – example N1 

FEM IN 2D: CONSTANT STRAIN TRIANGLES 
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The three bilinear shape functions NI(x1, x2); (I=1, 2, 3) 

FEM IN 2D: CONSTANT STRAIN TRIANGLES 
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FEM IN 2D: CONSTANT STRAIN TRIANGLES 

Displacement discretization is conveniently written in matrix form: u = Nqe 

u  N  

qe  
Kinematic discretization is also written in matrix form: ε = Bqe 
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Kinematics discretization is conveniently written in matrix form: ε = Bqe 

FEM IN 2D: CONSTANT STRAIN TRIANGLES 

NOTE: B matrix is constant (constant strain triangle!) 
	

εT = [ε11, ε22, γ12]; where γ12 = 2 ε12  
 
Recall: qe

T = [U1
1, U2

1, U1
2, U2

2, U1
3, U2

3] 
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2�12

plane strain plane stress 

FEM IN 2D: CONSTANT STRAIN TRIANGLES 

Constitutive equation also written in matrix form: σ = Lε 
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FEM IN 2D: CONSTANT STRAIN TRIANGLES 

Element stiffness matrix: ke 

Element force vector: fe 
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FEM IN 2D: CONSTANT STRAIN TRIANGLES 

Element stiffness matrix: ke for constant moduli L 

Element force vector: fe for constant body forces b & traction t 

NOTE: element has traction applied on the side defined by nodes 1 & 2 
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FEM IN 2D: CONSTANT STRAIN TRIANGLES 

 ISOPARAMETRIC CONSIDERATIONS FOR 2D FEM 
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FEM IN 2D: ISOPARAMETRIC CONSTANT STRAIN TRIANGLES 

ξ2 

ξ1 

Master 
element 

(ξ1
3,ξ2

3) = (0,0) 

(ξ1
2,ξ2

2) = (0,1) 

(ξ1
1,ξ2

1) = (1,0) 

1 

2 

3 

Parameters: ξ1, ξ2	
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FEM IN 2D: ISOPARAMETRIC CONSTANT STRAIN TRIANGLES 

Master element shape functions NI(x1, x2)  are found to be:	
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FEM IN 2D: ISOPARAMETRIC CONSTANT STRAIN TRIANGLES 

For strains we need the transformation (Hessian) matrix J and its inverse J-1	
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FEM IN 2D: ISOPARAMETRIC CONSTANT STRAIN TRIANGLES 

Definition of matrix A	


A 
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FEM IN 2D: ISOPARAMETRIC CONSTANT STRAIN TRIANGLES 

Definition of matrix G	


G 
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FEM IN 2D: ISOPARAMETRIC CONSTANT STRAIN TRIANGLES 

Finding element stiffness using master element	
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QUADS AND HIGHER ORDER ISOPARAMETRIC ELEMENTS 

 ISOPARAMETRIC QUADS & HIGHER ORDER 2D ELEMENTS 
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FEM IN 2D: ISOPARAMETRIC 4-NODE QUAD ELEMENTS 

ξ2 

ξ1 
Master 
element 

(ξ1
1,ξ2

1) = (-1,-1) 

(ξ1
4,ξ2

4) = (1,-1) 

(ξ1
2,ξ2

2) = (1,-1) 
2 

4 

1 

3 

(ξ1
3,ξ2

3) = (1,1) 

Isoparametric quadrilateral element (quad) 
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FEM IN 2D: ISOPARAMETRIC 4-NODE QUAD ELEMENTS 

Shape functions NI(ξ1, ξ2) and 
coordinate transformation matrix 
J for 4-node isoparametric quads 
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FEM IN 2D: ISOPARAMETRIC 4-NODE QUAD ELEMENTS 

Recall definition 
of matrix 

A 
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Recall definition of matrix 

FEM IN 2D: ISOPARAMETRIC 4-NODE QUAD ELEMENTS 

G 
qe 
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FEM IN 2D: ISOPARAMETRIC 4-NODE QUAD ELEMENTS 

Element stiffness matrix: ke 

Element force vector: fe 

σ	
εT dA 
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FEM IN 2D: ISOPARAMETRIC 9-NODE QUAD ELEMENTS 

Shape functions must satisfy: NI(ξ1
J, ξ2

J)=δIJ 

ξ2 

ξ1 

Master element 
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8,ξ2

8) = (-1,0) (ξ1
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FEM IN 2D: ISOPARAMETRIC 9-NODE QUAD ELEMENTS 

Recall quadratic Lagrangian  
functions Li(ξ)  in interval [-1,1] 

 
Shape functions are products: 

NI(ξ1, ξ2)=Li(ξi) Lj(ξ2)  

1

L1(x) L2(x) L3(x) 

ξ =-1 ξ =0 ξ =1 
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FEM IN 2D: ISOPARAMETRIC 9-NODE QUAD ELEMENTS 

ξ2 

ξ1 

N4(ξ1,ξ2)=L1(ξ1) L3(ξ2) 

2 

4 

1 

3 

N3(ξ1,ξ2)=L3(ξ1) L3(ξ2) 

5 

6 

7 

8 

9 

N7(ξ1,ξ2)=L2(ξ1) L3(ξ2) 

N8(ξ1,ξ2)=L1(ξ1) L2(ξ2) 

N1(ξ1,ξ2)=L1(ξ1) L1(ξ2) 

N9(ξ1,ξ2)=L2(ξ1) L2(ξ2) 

N5(ξ1,ξ2)=L2(ξ1) L1(ξ2) 

N6(ξ1,ξ2)=L3(ξ1) L2(ξ2) 

N2(ξ1,ξ2)=L3(ξ1) L1(ξ2) 
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Disadvantage of 9-node quad elements: needless increase of bandwidth 

1 

2 

3 

4 

2n 

2n+1 

2n+2 

4n+5 

4n+2 6n+3 

4n+3 6n+4 

n elements of  
9-node quads 

n elements of  
8-node quads 

Bandwidth: 
 2 × (4n+5) 

 
for 9-node 

quads 

3n+2 5n+3 

1 

2 

3 

4 

2n 

2n+1 

2n+2 3n+3 5n+4 

3n+5 

Bandwidth: 
 2 × (3n+5) 

 
for 8-node 

quads 
 

FEM IN 2D: ISOPARAMETRIC 9-NODE QUAD DISADVANTAGE 
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Way to eliminate internal nodes: static condensation 

FEM IN 2D: STATIC CONDENSATION 9-NODE TO 8-NODE 

ξ2 

ξ1 

2 

4 

1 

3 

5 

6 

7 

8 
9 

Change element 
stiffness & force of 
boundary nodes by: 

Equilibrium equation for node 9 solved immediately 
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FEM IN 2D: ISOPARAMETRIC 8-NODE QUAD ELEMENTS 

ξ2 

ξ1 

2 

4 

1 

3 

5 

6 

7 

8 

ξ2 - 1=0 

- ξ1 + ξ2 +1=0 

+ ξ1 - ξ2 +1=0 

+ ξ1 + ξ2 +1=0 

- ξ1 - ξ2 +1=0 

ξ2 + 1=0 

ξ1 +1=0 ξ1 - 1=0 

Equations of different lines in the master element 

Master element 
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FEM IN 2D: ISOPARAMETRIC 8-NODE QUAD ELEMENTS 

Shape functions of node I are products of line equations with remaining nodes 
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FEM IN 2D: ISOPARAMETRIC 6-NODE TRIANGLES 

Shape functions of node I are products of equations avoiding that node 

1 

2 

3 

4 

5 

6 

ξ1 =1 

ξ1 =1/2 

ξ1 =0 

ξ3 =0 
ξ3 =1/2 

ξ3 =1 ξ2 =0     

ξ2 =1/2    

ξ2 =1    

Triangular coordinates satisfy: ξ1+ξ2+ξ3 =1 
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NUMERICAL INTEGRATION IN ISOPARAMETRIC ELEMENTS 

 NUMERICAL INTEGRATION IN 1D AND 2D 
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NUMERICAL INTEGRATION IN 1D ELEMENTS 

Weights quadrature points remainder 

accuracy order  
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GAUSSIAN INTEGRATION (QUADRATURE) IN 1D 

Gaussian quadrature of 1, 2 and 3 points 
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GAUSSIAN INTEGRATION (QUADRATURE) IN 1D 

General Gaussian quadrature of nI points is 2nI accurate 
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GAUSSIAN INTEGRATION (QUADRATURE) IN 2D 

General Gaussian quadrature in 2D uses master element 

ξ2 

ξ1 

(ξ1
1,ξ2

1) = (-1/√3,-1/√3) 

(ξ1
2,ξ2

1) = (1/√3,-1/√3) 

(ξ1
1,ξ2

2) = (-1/√3,1/√3) 

(ξ1
2,ξ2

2) = (1/√3,1/√3) 

A 2×2 Gauss integration 
uses grid points with 

coordinates and weights 
taken from 1D 
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 ISOPARAMETRIC ELEMENTS IN 3D 
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FEM IN 3D: ISOPARAMETRIC 4-NODE TETRAHEDRON 

4-node isoparametric tetrahedron 4 

1 

2 

3 0 

Coordinates ξi 
 
ξ1  = V0234 /V1234   – V0234 : Volume 0234… 
ξ2  = V0134 /V1234 
ξ3  = V0124 /V1234 
ξ4  = V0123 /V1234 
 
Note: ξ1  + ξ2  + ξ3  + ξ4  = 1, patch test automatically satisfied 
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RECALL: ISOPARAMETRIC 6-NODE TRIANGLES IN 2D 

Shape functions of node I are products of equations avoiding that node 

1 

2 

3 

4 

5 

6 

ξ1 =1 

ξ1 =1/2 

ξ1 =0 

ξ3 =0 
ξ3 =1/2 

ξ3 =1 ξ2 =0     

ξ2 =1/2    

ξ2 =1    

Triangular coordinates satisfy: ξ1+ξ2+ξ3 =1 
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FEM IN 3D: ISOPARAMETRIC 10-NODE TETRAHEDRON 

10-node isoparametric tetrahedron in 3D similarly to 6-node triangle in 2D 

ξ1 =0 

ξ1 =1/2 

ξ1 =1 

Shape functions satisfy: ΣΝI (ξ)=1 

Shape function of a node is product 
of equations of planes that do not 

contain that node; e.g. N10 = 4 ξ3 ξ4  

1 

2 

5 
6 

3 

8 

4 

7 

9 

10 
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FEM IN 3D: ISOPARAMETRIC 8-NODE HEXAHEDRON 

8-node isoparametric hexadedron 

Shape functions satisfy: ΣΝI (ξ)=1 

ξ1 

ξ2 

ξ3 

1 

2 

3 

4 

5 

6 

7 

8 

(ξ1
8,ξ2

8ξ3
8) = (-1,1,1) 

(ξ1
6,ξ2

6ξ3
6) = (1,-1,1) 

Shape functions ΝI (ξ) (I = 1,…8) 
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FEM IN 3D: NUMERICAL INTEGRATION 

isoparametric hexadedron 

isoparametric tetrahedron 
1D Gaussian weights  
and points of [-1,1] 

3D Gaussian weights  
and points calculated in 
master element 

nI =1 – accuracy O(h2) 
w1 =1, ξ1=(1/4,1/4,1/4,1/4) 
 
nI =5 – accuracy O(h4) 
w1 =-4/5, ξ1=(1/4,1/4,1/4,1/4) 
w2,3,4,5 =9/20, ξ2=(1/2,1/6,1/6,1/6), others by cyclic symmetry 
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PROBLEMS INVOLVING HIGHER ORDER GRADIENTS 
1D (BERNOULLI-EULER-NAVIER) BEAM THEORY 
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DERIVATION OF 1D BEAM THEORY (IN-PLANE BENDING) 

BERNOULLI–EULER–NAVIER 
 
•  Uniaxial stress state (only σ11) 

•  Plane sections normal to 
centroidal line remain plane and 
normal to the deformed one 

•  Small (infinitesimal) strain 
kinematics 

•  Linear elastic constitutive law 
(isotropic, can be generalized to 
transversely isotropic about 
centroidal line) 

x1 =x, v(x) 

x2 = y, w(x) 

x3 

centroid 

σ11 = Ε ε11 = 
E(du1/dx1) 

v(x) 

u1(x1,x2,x3) = 
v(x)-yθ(x) 

x 

y 

w(x) 

dx 

dw(x) 
θ(x) = dw/dx 

centroidal line 
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DERIVATION OF 1D BEAM THEORY (IN-PLANE BENDING) 

bending energy axial energy 

centroid  def. section moment of inertia section area 
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DERIVATION OF 1D BEAM THEORY (IN-PLANE BENDING) 
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FEM FOR BENDING OF 1D BEAM – HERMITIAN CUBICS 

ξ = -1 ξ = 1 

1 

H1(ξ) 

H2(ξ) 

H3(ξ) 

H4(ξ) 

1 

ξ = -1 ξ = 1 

ξ = 1 ξ = -1 

1 

1 ξ = 1 ξ = -1 

The bending energy  – EI(d2w/dx2)2 term – dictates 
C1 continuity (i.e. continuous dw/dx) of the test 
function w(x) in the entire beam. Consequently we 
must ensure inter-element continuity of both w(x) 
and dw/dx at each boundary node. The simplest 
element functions that do this are Hermitian cubics 
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2D KIRCHHOFF PLATE THEORY 
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DERIVATION OF 2D KIRCHOFF PLATE BENDING THEORY 

KIRCHHOFF PLATE THEORY: 
 
•  Plane stress state (only σαβ  –  α, β  = 1,2) 

•  Νormals to the undeformed middle plane 
remain normal to the deformed middle 
surface 

•  Small (infinitesimal) strain kinematics 

•  Linear elastic constitutive law (isotropic, 
can be generalized to transverseley 
isotropic about normal direction) 

•  Reduces to Bernoulli-Euler-Navier for 
loading that is independent on x2 (or x1) 

t2 
bi 

x1, v1 

x2, v2 

h 
x1, v1  

z, w 

A 

∂A 

n 

t1 

q p 

p2  

p1  

m 

s 
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DERIVATION OF 2D KIRCHHOFF PLATE BENDING THEORY 
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2D PLATE THEORY REDUCES TO BEAM FOR IN-PLANE BEND. 
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DERIVATION OF 2D KIRCHHOFF PLATE BENDING THEORY 
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KIRCHHOFF PLATE BENDING FOR TRANSVERSE LOADING 

NOTE: Since second order derivatives of the transverse displacement  enter 
the bending energy, need C1 inter-element continuity! 
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KIRCHHOFF PLATE BENDING FOR TRANSVERSE LOADING 

The simplest element that can satisfy C1 inter-element continuity of w(x1,x2) 
is the Clough Triangle that has 21 degrees of freedom an a full fifth order 
polynomial shape function 

Inter-element continuity of w(s) 
at each side: 5th order polynomial 
in s (length coordinate) share the 
same 6 constants: w, w,s, w,ss at 
each end node 
 
Inter-element continuity of w,n(s) 
at each side: 4th order polynomial 
in s share the same 5 constants: 
w,n, w,nn at each end node and w,n 
at the mid-side node   

1 

w1,  
w1

,1 , w1
,2 , 

 w1
,11 , w1

,12 ,w1
,22 

2 

3 
w3,  

w3
,1 , w3

,2 , 
 w3

,11 , w3
,12 ,w3

,22 

w2,  
w2

,1 , w2
,2 , 

 w2
,11 , w2

,12 ,w2
,22 

w3
,n  

w1
,n  

w2
,n  

x1  

x2  

s 
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RELAXING HIGH ORDER INTERELEMENT 
CONTINUITY: TRANSVERSE SHEAR ENERGY AND 

ASSOCIATED PENALTY METHODS 
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1D BEAM THEORY WITH TRANSVERSE SHEAR 

TIMOSHENKO BEAM THEORY 
 
•  Axial plus shear stresses (σ11, σ12) 

•  Plane sections normal to 
centroidal line remain plane and 
rotate by an angle θ   

•  Small (infinitesimal) strain 
kinematics 

•  Linear elastic constitutive law 
(isotropic, can be generalized to 
transverseley isotropic about 
centroidal line) 

x1 =x, v(x) 

x2 = y, w(x) 

x3 

centroid 

σ11 = Ε ε11 = 
E(du1/dx1) 

σ12 = G γ12 = 
G(du1/dx2+du2/dx1) 

v(x) 

u1(x1,x2,x3) = 
v(x)-yθ(x) 

x 

y 

w(x) 

dx 

centroidal line 

θ 
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bending energy axial energy 

shear correction factor κ 
accounts for non-uniform 
shrear stress distribution 

1D BEAM THEORY WITH TRANSVERSE SHEAR 

shear energy 
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NOTE: linear 
interpolation! 

BENDING OF 1D BEAM THEORY WITH TRANSVERSE SHEAR 
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NOTE: Each numerical integration point increases the rank of the 
stiffness matrix Kγ by one (it corresponds to one constraint). We need less 
constraints than d.o.f. and hence we underintegrate to obtain a singular Kγ  

BENDING OF 1D BEAM THEORY WITH TRANSVERSE SHEAR 
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MINDLIN THEORY – ADDING TRANSVERSE SHEAR ENERGY 

Transverse shear energy is 
added; this is the penalty 

term that enforces the 
slope-rotation relation 

NOTE energy involves 1st order gradients of d.o.f.  
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FEM FOR DYNAMICS PROBLEMS 
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EQUATIONS OF MOTION – HAMILTON’S PRINCIPLE 
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EQUATIONS OF MOTION – HAMILTON’S PRINCIPLE- CONT. 

Euler-Lagrange equation 
of motion – pointwise 

Natural boundary 
condition – pointwise 
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EQUATIONS OF MOTION – HAMILTON’S PRINCIPLE - FEM 

FEM equations of motion 

FEM mass matrix 

FEM stiffness matrix 

FEM force vector 

FEM degrees of freedom 
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FEM CALCULATIONS OF EIGENVALUES & MODES 
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Positive definite  mass matrix, 
Easy to invert (lumping…) Positive definite stiffness matrix 

EIGENVALUE PROBLEM USING RALEIGH QUOTIENTS - FEM 

eigenfrequency 

eigenmode 
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INCREMENTAL NEWTON-RAPHSON FOR 
NONLINEAR PROBLEMS IN FEM 
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NEWTON-RAPHSON FOR NONLINEAR EQUATIONS 

 
•  The Newton-Raphson algorithm is used to solve a nonlinear set of 
equations f(u) = 0, where u is the n-dimensional degree of freedom 
vector. Since our FEM system comes from a minimization principle, 
vetor f is the derivative of the potential energy P (u), i.e. f = ∂P /∂u 
 
•  Method requires the construction of the tangent stiffness matrix K(u)
(where K(u) = ∂f/∂u = ∂2P /∂u∂u) that has to be re-assembled at every 
step of the solution process 
 
•  Although this algorithm has a rapid convergence, it requires a good 
initial guess. If the initial guess is outside the domain of convergence, the 
algorithm fails. So a method to provide a reliable initial guess is needed 
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INCREMENTAL NEWTON-RAPHSON METHOD IN FEM 
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INCREMENTAL NEWTON-RAPHSON METHOD IN FEM 

Stiffness matrix (needs 
inversion at each step) 

Load vector 
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NEWTON-RAPHSON FOR NONLINEAR EQUATIONS 

initial guess: u(0)  

 
converged solution: u(n) 

u 

λ 

u(1) 

 
u(2) 

 

(0) 
 

(1) 
 

(2) 
 

(n) 
 

Applied load 

K(u(0))  

K(u(1))  

K(u(2))  

Superscript: iteration number 

Equilibrium solution of 
continuum problem is 
amenable to solving a 
finite d.o.f. nonlinear 

problem through FEM 
discretization 

 
For the Newton-Raphson 
method to work, a good 

initial displacement guess 
is needed to guarantee 
convergence (this is a 

fixed-point method with 
quadratic convergence) 
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INCREMENTAL METHOD FOR NONLINEAR EQUATIONS 
 
•  Although this algorithm has a rapid convergence, it requires a good 
initial guess. If the initial guess is outside the domain of convergence, the 
algorithm fails. So a method to provide a reliable initial guess is needed 

•  Physics come to the rescue. Loading can often be parametrized by a 
monotonically increasing  positive scalar λ ≥ 0 (termed load parameter) 
and the potential energy is P (u, λ). Solution is u(λ) 
 
•  For λ = 0 (unloaded configuration) u(0) = 0, which is our starting point 
 
•  By increasing the load in small increments Δλ = λi+1 - λi one can use the 
converged solution of the previous load step u(λi) as an accurate initial 
guess to calculate the solution for the current load step u(λi+1) . This is the 
incremental part of the algorithm that guarantees convergence if Δλ is 
adequately small 
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u(i) = u(i) 
 

u(i) = u(i+1) 

λ(i) 

λ(i+1) 

u 

λ 

Δλ 

u(i) 
 

u(i) 
 

(0) 
 

(1) 
 

(2) 
 

(n) 
 

INCREMENTAL METHOD FOR NONLINEAR EQUATIONS 

Superscript: iteration number 

Subscript: load step number 

Incremental method starting 
from zero load/displacement 

is needed to guarantee 
convergence of Newton-
Raphson (works for small 

enough load steps) 
 

Within each increment, we 
use the converged solution 
of the previous load step as 
an accurate initial guess to 

calculate the solution for the 
current load step 
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FINITE STRAIN ELASTICITY (2D) 
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FINITE STRAIN ELASTICITY – 2D 

Finite strain elasticity: W(F) = W(C), where C = FT.F (right Cauchy-Green) 
 
Isotropic case: W(I1, I2)  where are invariants of C (I1 = tr C, I2 = det C) 
 
Element force vector and stiffness matrices easily constructed by 
calculating the first and second derivatives of W with respect to F 
 
ATTENTION: Nonlinear problems have non-unique solutions (buckling) 
 
ATTENTION: Constitutive equations have to satisfy certain properties 
(rank-one convexity) otherwise discontinuous solutions are possible and 
FEM results depend on the mesh you use! 
 
You cannot use nonlinear FEM problems without understanding your 
mechanics, otherwise you get nonsensical results 
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FINITE STRAIN ELASTICITY – 2D 

Area A 

 boundary ∂A 

X1, u1 

X2, u2 

Body force f 

Surface 
traction t 

REFERENCE 
CONFIGURATION 
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FINITE STRAIN ELASTICITY – 2D 

FEM force vector 

FEM tangent stiffness matrix 

NOTE: W(F) not convex in F – Aij Lijkl (F) Akl sign depends on A (arbitrary) 
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FINITE STRAIN ELASTICITY – 2D 

Finite strain elasticity: W(F) cannot be convex in F (otherwise all nonlinear 
elasticity problems would have had a unique solution)! 
 
However W(F) has to be rank-one convex (elliptic system of incremental 
equations) in order to avoid the appearance of discontinuous solutions)    
 
 
 

 normal N 
tangent S 

a b discontinuity line 
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POWERFULL CODES PRODUCE NICE PICTURES, BUT 

1. Need to know the code behind them! 

2. You need to understand your model! Very frequently the code 
gives correct results but you are unable to interpret them… 

3.  In linear problems with constraints or higher order displacement 
gradients you must avoid locking phenomena (underintegrate) 

4.  In nonlinear problems solutions not unique! attention to 
buckling and localization phenomena (mesh-dependence)! 

5. Goal of the class to help you understand mechanics and how 
we translate the mathematical model to a functioning algorithm 
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TWO IDEAS I WANT YOU TO REMEMBER: 

 

1. Need to know the code behind FEM packages you use! 

2. Understand your mechanics very well! 

THANKS FOR TAKING THIS CLASS, ALWAYS AT YOUR 

DISPOSAL IF YOU ARE INETERESTED IN THIS MATERIAL! 
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