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TOPICS COVERED IN THIS LECTURE 

 
1.   PENALTY METHOD FOR 1D BEAMS – TIMOSHENKO BEAM THEORY 

2.  PENALTY METHOD FOR 2D PLATES – MINDLIN PLATE THEORY 

3.  PENALTY METHOD FOR INCOMPRESSIBLE LINEAR ELASTICITY 

MEC 557 – FINITE ELEMENT METHOD IN SOLID MECHANICS 
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PENALTY METHODS FOR CONSTRAINED PROBLEMS 

l  Often in mechanics we are faced with constrained problems (exact or 
approximate) that require special handling… 

l  Constraints can come either from physics or from a mathematical 
relaxation of the problem. Here we use penalty type formulations to 
address the constraint issue  

l  One category of problems pertains to theories involving physically existing 
constraints, such as incompressibility. 

l  Another category pertains to theories involving energies with higher order 
gradients for which complicated special elements are needed! To avoid 
such elements, we use relaxed formulations (often motivated by physics) 
that again introduce constraints. 

 

 

CONSTRAINED PROBLEMS IN MECHANICS 
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TIMOSHENKO BEAM THEORY (1D) 
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1D BEAM BENDING THEORY WITH TRANSVERSE SHEAR 

TIMOSHENKO BEAM THEORY 
 
•  Axial plus shear stresses (σ11, σ12) 

•  Plane sections normal to 
centroidal line remain plane and 
rotate by an angle θ   

•  Small (infinitesimal) strain 
kinematics 

•  Linear elastic constitutive law 
(isotropic, can be generalized to 
transversely isotropic about 
centroidal line) 

x1 =x, v(x) 

x2 = y, w(x) 

x3 

centroid 

σ11 = Ε ε11 = 
E(du1/dx1) 

σ12 = G γ12 = 
G(du1/dx2+du2/dx1) 

v(x) 

u1(x1,x2,x3) = 
v(x)-yθ(x) 

x 

y 

w(x) 

dx 

centroidal line 

θ 
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bending energy axial energy 

shear correction factor κ 
accounts for non-uniform 
shear stress distribution 

(κ=2/3 for rectangular section) 

1D BEAM BENDING THEORY WITH TRANSVERSE SHEAR 

shear energy 

ADVANTAGE: THEORY 
USES ONLY FIRST 

ORDER GRADIENTS! 
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1D BEAM BENDING THEORY WITH TRANSVERSE SHEAR 
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SOLVING 1D BEAM THEORY WITH TRANSVERSE SHEAR 
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RECALL EXACT 2D SOLUTION OF BEAM WITH END LOAD 

Airy stress function has correct axial, shear forces and moment at ends 

Left: (x1=0) 
 

N = 0 
 

V = 1 
 

M = L 
 

Right: (x1=L) 
 
 

N = 0 
 

V = 1 
 

M = 0 
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Exact (2D) plane stress solution of cantilever beam problem: 

Euler–Bernoulli Beam Theory (1D): 

Timoshenko Beam Theory (1D): 
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COMPARE EXACT, BERNOULLI & TIMOSHENKO SOLUTIONS 

χ1 = x1/L 
 

χ2 = x2/h 
 

η = L/h  >> 1 
slenderness 

 

Timoshenko  
correction 

2D theory 
correction 
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WHY TIMOSHENKO BEAM METHOD WORKS? 

In minimizing the potential energy, since the coefficient of the shear 
contribution is large O(h-2) the shear strain term has to be small to compensate, 
i.e. γ = dw/dx – θ must be of O(h2) and hence dw/dx è θ 
 
Methods in mechanics where we enforce a constraint by adding the constraint 
squared multiplied by a large number are termed penalty methods. 
 
Their advantage is that they keep a positive internal energy and do not require 
the introduction of additional variables (i.e. Lagrange multipliers). 
 
Where is the catch? Special care is needed to avoid locking phenomena!   
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FEM FOR TIMOSHENKO BEAM THEORY (1D) 
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Each element has 2 nodes and each node i has 2 d.o.f. (θi, wi ) 
 
Since only 1st order gradients of the two independent variables (θ(x),w(x)) 
appear, C0 continuous shape functions are adequate; we employ 
isoparametric interpolation with piecewise linear shape functions as the 
simplest possible element in Timoshenko beam theory  
 
 
 

2h = 1/20 

L = 1 
F = 1 

x2

xi 

x =x1 

xi+1 

θi, wi θi+1, wi+1 

FEM FOR BENDING OF 1D BEAM WITH TRANSVERSE SHEAR 
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isoparametric,  
linear interpolation! 

FEM FOR BENDING OF 1D BEAM WITH TRANSVERSE SHEAR 

O(h4) O(h2) 

different orders of 
magnitude terms 
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FEM FOR BENDING OF 1D BEAM WITH TRANSVERSE SHEAR 
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NOTE ON HOW TO AVOID LOCKING IN FEM  
 

Since each constraint f(w,θ) = 0 becomes an integrand penalty term of the 
form: ζ-1[f(w,θ)]2, every integration point adds to the stiffness matrix a 
rank-one term QT[ζ-1BTB]Q.  
 
Each numerical integration point increases the rank of the stiffness matrix 
Kγ by one (it corresponds to one constraint).  
 
We need less constraints than available d.o.f. for Kγ and for most cases we 
must underintegrate to obtain a singular Kγ  
 
To check if your FEM discretization avoids locking, make sure that the 
total number of d.o.f. for the structure are more than the total number of 
numerical integration points for the constraint part of the energy 

FEM FOR BENDING OF 1D BEAM WITH TRANSVERSE SHEAR 
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Shear locking in 1D beam bending 

Hermitian cubic elements 

Timoshenko beam elements 
with reduced integration 

Euler–Bernoulli solution 

BERNOULLI & TIMOSHENKO BEAM SOLUTIONS FOR u2(L) 

Eu2(L)

F⌘3

Number of elements 

! ! ! ! ! ! ! ! ! !

!

!

! ! ! ! ! ! !

100 101 102

0.4

0.5
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MINDLIN PLATE THEORY (2D) 
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2D PLATE BENDING THEORY WITH TRANSVERSE SHEAR 

MINDLIN PLATE THEORY: 
 
•  Plane stress state (only σαβ  –  α, β  = 1,2) 

•  Cross-sections normal to the xi axis rotate 
by small angle θi while mid-plane points 
move by (v1, v2, w) 

•  Small (infinitesimal) strain kinematics 

•  Linear elastic constitutive law (isotropic, 
can be generalized to transversely 
isotropic about normal direction) 

•  Reduces to Timoshenko beam theory for 
loading that is independent on x2 (or x1) 

t2 
bi 
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x2, v2 

h 
x1, v1  
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MINDLIN THEORY – ADDING TRANSVERSE SHEAR ENERGY 

Transverse shear energy is added; this is the penalty term that 
enforces the slope-rotation relation when h è 0 

 NOTE energy involves 1st order gradients of d.o.f.  

Note different order of magnitude terms 
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Quad Mindlin theory elements: use bilinear interpolation for 
each one of the unknown fields: w(x1, x2), θ1(x1, x2), θ2(x1, x2)  

ξ2 

ξ1 
Master 
element 

d.o.f.: w1, θ1
1, θ2

1 
(ξ1

1,ξ2
1) = (-1,-1) 
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4, θ2

4 
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2 
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2 

4 

1 

3 

d.o.f.: w3, θ1
3, θ2

3 
(ξ1

3,ξ2
3) = (1,1) 

MINDLIN THEORY – FEM INTERPOLATION 

To avoid locking phenomena, use 
a 2x2 Gauss integration scheme 
for the bending part of the energy 
and 1 Gauss integration point for 
each one of the two transverse 
shear energy terms 
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COMPARE 2D AND 3D SQUARE PLATE SOLUTIONS FOR u3
max 

Shear locking in 2D plate bending 

Discrete Kirchhoff  
theory element 

Mindlin 4-node elements 
with reduced integration 1 x 1 
Mindlin 4-node elements 
using an integration 2 x 2 

Kirchhoff-Love solution 

!

!

! ! !

!

! ! ! ! !

!

!

!
! ! !

101 102 103

!300

!350

Number of elements 

umax

3

3D exact solution 
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INCOMPRESSIBLE LINEAR ELASTICITY (2D OR 3D) 
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REVIEW OF SMALL STRAIN LINEAR ELASTICITY 

Solid occupies domain: V 

Domain boundary: 

Body forces: b 

Surface traction: t 

Surface normal (outward): n 

Traction prescribed on: 

Displacement prescribed on: 

Position vector: x 

 
 
 
  

n 

b 

t 

V 
x 

Energy density: W(ε) 
 
Stress-strain: 
 
(general nonlinear elastic material) 
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To model incompressible solids take: ν = 0.5 - ζ (ζ << 1) and use 
reduced integration for the bulk component of energy  

bulk component of energy 

INCOMPRESSIBLE SMALL STRAIN LINEAR ELASTICITY 


