X\ MEC 557 — FINITE ELEMENT METHOD IN SOLID MECHANICS &’;

TOPICS COVERED IN THIS LECTURE

1. CONVERGENCE REQUIREMENTS, PATCH TEST & OTHER REMARKS

2. SINGULARITIES AT NOTCHES (AND CRACKS) IN 2D

3. STRESS-INTENSITY FACTORS VIA INTERPOLATION AND SPECIAL ELEMENTS

4. STRESS-INTENSITY FACTORS USING ENERGY METHODS
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CONVERGENCE REQUIREMENTS & OTHER REMARKS
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CONVERGENCE REQUIREMENTS M

Sufficient conditions for convergence 1n linear elasticity problems solved
using the FEM are C? continuity and completeness of interpolation
functions, 1.e. their capability of representing exactly constant strain
solutions (or equivalently any linear displacement field)

* Inter-element continuity needed for finite energy of the approximation

@
dx

u(x) /

v

=0(x —xg) + -
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CONVERGENCE REQUIREMENTS

As mesh size (max size of element) /# » 0, the strains in each element are
almost constant. Consequently FEM interpolation must be able to
represent any constant strain field and shape functions must be able to
represent exactly an arbitrary linear displacement field (property known

under the name: patch test)

linear field : u;(€) = iz (&) + B;, U = Oéz'j%] + 0

interpolation : u;(§) = Z NJ(é)U,L'J = NJ(&)(Oé@jCE“j] + 5;)
J

J
interpolation : x;(§) = Z Ny (&)
J

combine : u;(§) = a;;x,;(&) + @[Z N;(&)] =

> Ns(&) =1
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REMARKS ON RIGID BODY MOTION &é

Satisfying the patch test requirement, includes accounting for rigid body
translations and infinitesimal rotations.

Recall that FEM discretization can include arbitrary linear displacement
fields: u; = a; x; + f; and thus ¢, can clude infinitesimal rotations
(antisymmetric tensors £, = -€2,;) and p; accounts for translations

NOTE: Small strain linear elasticity is invariant under infinitesimal
strains but 1s not invariant under finite strains!

For displacement field u; = [R; — 9;]x; you can easily see that the strains
are ¢; = [R; + R;] that does not vanish for a finite rotation R,

NOTE: Finite strain theories are needed to correct this problem!
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SINGULARITIES OF NOTCHES (AND CRACKS) IN 2D
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FRACTURE MECHANICS AND ASSOCIATED FEM TOOLS {MS

Fracture plays an important role in engineering
design. Inevitable flaws (in the form of cracks) can
grow uncontrollably, 1f they exceed a certain size

Pictures above are: from failure of US Schenectady
(1943), de Haviland Comet (1950°s) and Flight
AA587 (2001)
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FRACTURE MECHANICS AND ASSOCIATED FEM TOOLS M

* Linear Elastic Fracture Mechanics (LEFM) is a successful theory for
designing against inevitable flaws in structures

* Stresses are infinite at ends of flaws (crack tips) but their known
singularity has an amplitude called stress intensity factor

* The stress intensity factor 1s related to the energy required to advance
the crack, a measurable material property (energy release rate). When the
stress intensity factor is lower than the one corresponding to the critical
energy release rate the crack does not advance

* In LEFM we calculate using FEM the stress intensity factor for a given
structure and loading and check 1f it 1s less than its critical value

 LEFM is a successful theory for brittle solids where the process zone
ahead of the crack tip 1s small compared to the flaw dimensions
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RECALL AIRY’S STRESS FUNCTION FOR 2D PROBLEMS M

In the absence of body forces, boundary value problems 1n 2D isotropic
linear elasticity (plane stress or plane strain) and be found using the Airy
stress function ¢ (equilibrium automatically satisfied).

2D elasticity : must find a biharmonic function ¢ : V4¢ =0

2 2 2 2
cartesian : V¢ = (8— + 8_) (ﬁ + %> =0

oxy  0x3) \0x*  Ox
o P 020
8332(9.732 2T 83]18561 ’

02 10 1 O? 0% 109 1 0%¢
. 4 . = _ O ] =
g v¢_(8r2+rar r2892> (3r2+r5’r+r2 892) s

cartesian : o011 =

polar : o, =

18qb_|_ 82¢ @ o 10¢
ror | 2062 799 = g2 970 = 87“ r 00
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NOTCH PROBLEM - SINGULARITY NEAR TIP M

Interested 1n finding leading order terms near tip of elastic wedge:

¢ =10 — (%22 + (A — 1)2) (j—; + (A + 1)2> f(@)=0

f(0) = Aq cos[(A+ 1)0] + A cos[(A — 1)0] + Az sin[(A + 1)0] + Ay sin[(A — 1)0]

org = A H{A (N + 1) sin[(A + 1)0] + Aa(X — 1) sin[(X — 1)6]

—Az(A+ 1) cos[(A+1)0] — Ag(A — 1) cos[(A — 1)0]}

oo = A\r* LA (N + 1) cos[(A + 1)0] + Ax (X + 1) cos[(A — 1)0]

traction free
edges

+As(A+1)sin[(A+1)0] + A4(A+ 1) sin[(A —1)0]}

A found from traction free edges : |o,¢(7, £a) = ggg(r, ) =0
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NOTCH PROBLEM - SINGULARITY NEAR TIP &é

From stresses one can then calculate the corresponding displacements:
1 ou,

Err — SG [( + 1)0rr — (3 — R)O-OH] — or |
NOTE: only displacement
S L[(K 4 Doy — (3 — K)op] = 1 ug 4 U expressions depend on
8G r 00 plane stress or strain (via
1 10u, Oug ug Kolosov’s constant «);
€ro — 57070 — =+ —
2G (fr 00 or r )

Kolosov’s constant : k = 3 — 4v plane strain; k = (3 —v)/(1 + v) plane stress

2Gu, = r* {—=A1 (A + 1) cos[(A + 1)0] + Az (k — ) cos[(A — 1)0)]
—As(A+ 1)sin[(A 4+ 1)0] + Ag(xk — A) sin|(A — 1)6)]
2Gug = r* { A1 (A + 1) sin[(A 4+ 1)0] + As(k + M) sin[(XA — 1)6]

—As(A 4+ 1) cos|(A+ 1)8] — Ay(k + A) cos[(A — 1)6)]
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NOTCH PROBLEM - SINGULARITY NEAR TIP

(A + 1) sin[(A + 1)q]

(A4 1) cos[(A+ 1)a]

symmetric solution :

Asin(2a) + sin(2X\a) = 0,

(A —1)sin[(A — 1)a]

(A + 1) cos[(A —1)a]

A #0, A2 #0, (A3 =As =

solution : Ag

Ay

A

(A + 1) cos[(A+ 1)a]

(A4 1) sin[(A 4+ 1)a]

(A —1)cos[(A —1)a]

(A4 1) sin[(A — 1)a]

Ay

antisymmetric solution : (A; = A3 =0), A3#£0, A4 #0

Asin(2a) — sin(2Aa) =0, solution : A4
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NOTCH PROBLEM - SINGULARITY NEAR TIP

o] e} o
180 240 200

traction free 0 _
edges AT e N % :

Antisymmetric

o= 03 .
: Symmetric
-0.4 ~
For /2 < a < m (notch) we For o = m (crack) we still have |
. 5 . . . paS0g
have symmetric and anti- symmetric and anti-symmetric ~;_;

symmetric solutions with 4, > A¢  solutions with A, = A= 0.5
Solving systems for symmetric (4,, 4,) and anti-symmetric (4;, 4,) case, we get the corresponding

Airy stress functions ¢gand ¢, The unknown coefficients 4 and B will be related with stress
intensity factors K that depends on the geometry and loading of the structure.

symmetric : A} = A(Ag — 1)sin[(Ag — 1), As = —A(As + 1)sin[(As + 1)a],
¢s = Ar*st {(Ag — 1) sin[(As — 1)a] cos[(As + 1)0] — (As + 1) sin[(As + 1)a] cos[(As — 1)6]}
antisym. : Az = B(Aq + 1)sin[(Ag — 1)a], As=—B(Aa+ 1)sin[(Aa + 1)a],

¢4 = Brratl{(Ay —1)sin[(Ag — 1)a]sin[(Aq + 1)8] — (Mg + 1) sin[(Aa + 1)a]sin[(Aq — 1)0]}
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CRACK PROBLEM - SINGULARITY NEAR TIP M

« K, and K;; are called the stress- @
intensity factors in Mode-I and
Mode-II loading. -~ -
* Crack propagates 1f they exceed a \‘
critical value (fracture toughness) Mode | Mode I] Mode 1

Mode I: symmetric solution (2D) Mode II: anti-symmetric solution (2D)
Kr |5 cos 0 1cos 30\ Krr | 5sin 0 n Ssin 30\

O-rprr- — — — = == —_— O-’I"’)”‘ — — — — -
\ 27T _4 2 4 2 i V2rr | 4 2 4 2 _
= K § COS Q -+ 1 COS 3—9 — — K _—§ sin Q — § sin 3—9 —
700" omr 14 \2) T 1 2 )| T o | 4 \2) 4 2 )|

_18, 0 i 18, 36 Ky _1COS 0 —|—Scos 36
o = —sin [ = —sin | — o = - — — —
0T o 470 2) TAT\2 )] T e 27\ 2) T2
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CRACK PROBLEM - SINGULARITY NEAR TIP M_

The cartesian components of stresses and displacements near the crack tip are:

Mode I: symmetric solution (2D) Mode II: anti-symmetric solution (2D)

K Krr .
o1 = _;71” cos(%()) {1 — sin(%@) sm(%())} 011 = \/% | — sin( % {2 + COS(%f)) COS(%Q)}]
I\’[ - 1 1 3 = 1{11 Pecc® 19 S 19 g 39
Og9 = . cos (50 ) {1 + sin(50) 5111(-2-9)} 022 = T sin(560) cos(50) cos(35 )]
o192 = K cos(30) sin(560) cos(36)] O1p = Kir cos( % ){1— 5111(%9) sin(gO)}]
vV 2mr 2 2 2 Vv 2mr
Uy = i I cos(30) {x — 1 + 2sin’ (lg)}- Ul = =3 ] sin( 0) {x + 1+ 2cos (LH)}]
T oV on ! el 17 o Vornt 2
I(] r r 1 1 7 I(][ o i
Uy = 2.\ 2n sin(30) {x + 1 — 2cos*(36)} U = on Van ™ cos(30) {k — 1 — 2sin*(50) }|
=% U, : :
P I NOTE: as r»0, the displacements u,50 while the
1 S
VSN X ;  stresses 0, »c01n such a way that the energy stored
o at the entire solid is finite!
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STRESS-INTENSITY FACTORS VIA
INTERPOLATION AND SPECIAL ELEMENTS
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STRESS INTENSITY FACTOR USING EXTRAPOLATION &é

ut(r) —u (r) =u(r,7) —u(r, —m)

k+1 /| r
u(’f’,ﬂ') = 5C % [K]]el +K1e2]

k+1 [ r
ll(?“,—ﬂ') = 5C %[K[[el—FK[eg]

fit ay, ajr: d(r) =+/rla,es + o, €]

2 &2 C.0.D. d(r)

TOP (+)

BOTTOM (-)%

G 27 G\ 27
find K7, K7yr: K;= K;r =
n I, IT I OéIKle, IT 04”/{+1

Using an FEM discretization of the solid with acrack, we calculate the
crack-opening-displacement (C.0O.D.) using the displacement values
obtained at its two faces and from the fitted parameters o, and o, (e.g. using
least squares fit) we can evaluate the stress intensity factors K, and K,
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l‘@ \

< > s6—(1/4)13 N

Actual (x,) space

In order to calculate accurately the displacements near the crack tip, one can use
special elements that are capable of accounting for 7/ singularity. The simplest
possible choice are the 6-node triangles where two of the nodes (5 and 6) are
placed at % the distance from the crack tip node (3)

Xe = (1/4)x,, x5 = (1/4)x,, x, = (1/2)(x;+x,)
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CRACK TIP ELEMENT WITH SINGULAR SHAPE FUNCTION &é

*2! L (o éz Shape functions for
l357(1/4 320 @ X2 =H%, 2 6-node triangles
5 LU0 -7 '52 oG
i o/o@/ N =626 - 1)
__
R Ny = £(265 — 1
Actual (x,.) space Parameter (&) space = 2 $2(262 — 1)
— £3(265 — 1
Xg = (1/4)X, , X5 = (1/4)x,, x, = (1/2)(X,+X,) $3(26 — 1
xlzael,xzzbe1+ce2 N4:4€1€2
= (&) [U+allatab], x,=(S))° [{+a]lac]
N5 =4 283

B = [ac]/[a+ab] depends only on geometry!

Lines through 3 in parameter space map as lines in actual space! Ng = 4 £3&;

MECS557 — THE FINITE ELEMENT METHOD IN SOLID & STRUCTURAL MECHANICS —LECTURE 5 Page 19



CRACK TIP ELEMENT WITH SINGULAR SHAPE FUNCTION M

. o 09 :
L5 (14155, 2 F=hx, @dl
; Pl G) - ,o i '52 0551
X O@O/O@/
L ';—@ (1L, @y 0T Doy

Actual (x,) space Parameter (¢;) space

Recall: x, = (&))? [I+a][atab], x,= () [I+a][ac]

r=[(x,)? + (x,)?]2= (&) [1+a] y (geometry-dependent constant) i.e. & =V(r/y)
u(x;,x,) =X N;(&, &) X! =ZNj(&,ad)) X =w’ + f\/(’”—/l’) + g (rly)

Notice that the shape functions for the crack tip element are rich enough as to
include the correct singularity for the displacement field
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FEM CALCULATIONS IN A MODE | GRIFFITH CRACK
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X CRACK OF LENGTH 2a UNDER UNIAXIAL STRESSING (MODE I) é -‘

0,,=0 An infinite strip of width 25 contains a crack at
the center of length 2a. The strip 1s subjected

T T T TAT T T T to uniaxial stress o,, = 0.

Only one quarter 1s analyzed due to symmetry.

oy _
za/gv ou 0 0y, (x,,0) = 0|x1|/((x1)2 - a?)12 (for bsoo)

K, = o (na)!” (for b>o)

u, (x,,0) = [o(k +1)/4G] (a? - (x,)?)V? (for b>)

LLLLLTL

0,,=0 NOTE: K, = ¢ (wa/cos(wa/2b))"? (for finite b)
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b =
XCRACK OF LENGTH 2a UNDER UNIAXIAL STRESSING (MODE) !

COLE
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Five different types of meshes were analyzed:

A, B, C, D have simple constant strain triangles

I 1s made of 6-node triangles, with the ones at
the tip having the mid-node at quarter length
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Calculation of 05, (x,,0)

A mesh with a/3 size CST

35 ¢

2.0

1.5+

1.0

B mesh with a/10 size CST
1 C mesh with /33 size CST
1:0: D mesh with a/100 size CST

0.0 :

00 01 02 03 04 05 00 01 02 03 04 05

r/a r/a
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X CRACK OF LENGTH 2a UNDER UNIAXIAL STRESSING (MODE 1) M/

Calculation of crack opening displacement u, (x,,0)

2.0 . . . . . A mesh with a/3 size CST

B mesh with a/10 size CST

C mesh with a/33 size CST

(uz/a)(E/S)

D mesh with a/100 size CST

~1.0 —-0.8 —0.6 -0.4 -0.2 0.0 0.2
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STRESS-INTENSITY FACTORS USING ENERGY METHGODS
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ENERGY RELEASE RATE DUE TO PROPAGATING CRACK M

An advancing crack creates new surface and requires
energy/length _/, thus reducing the solid’s pot. energy U

Need to calculate change of energy due to domain D(z)
change: y = x + 7 z(x) where z(x): initial velocity of
transformation. For crack along x,, take z(x) = z,(x) e,

Assumptions: u(x) is the actual equilibrium displacement, there are no body forces

J=— e - / lui i Lijriug, da — Path-invariant J-integral
oT =0 orT D(T) 2 ’ .

1 1
= / [Uz‘,jLz‘jkluk,pr,l - §Ui,jLz‘jkluk,lZp,p] da = / [ui,jLz‘jpluk,mZ - §ui,jLz‘jkluk,lZp] da
R R P
1 1
= ui,jLz’jpluk,mzm — §ui,jLZ’jkl’UJk,lZ’p npds = ui710ijnj — iaijeijnl ds
OR '
T —To
21(x) =0 for x € Dy, 21(x)=1forx € D, (e.g. 21(x) = : XER) ;. 29(x) =0
™ —To
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b4
X ENERGY RELEASE RATE DUE TO PROPAGATING CRACK

Stress intensity factor(s) can be found numerically using
the FEM discretized solution (and numerical integration)
over a domain R that does not contain the singularity.

1 o 1
j — [ui,laijnj — 50'7;3'6&']'77/1] ds = / { [ui,laijnj — 50'7;]'67;]'7?,1] ’T’} do
' 0 r—0

K? 4+ K?)(k+1
J = S ) ) (using asymptotics near crack tip)

8G

1
j:/ [uz’,jLijkluk,pr,l — §Ui,jLijkluk,lZp,p da
R

1
J = Z/ [ Liikiug p2pl — 2u L5k U 1 2p, p] da (using FEM discretization)
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