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TOPICS COVERED IN THIS LECTURE 

 
1.  CONVERGENCE REQUIREMENTS, PATCH TEST & OTHER REMARKS  

2.  SINGULARITIES AT NOTCHES (AND CRACKS) IN 2D 

3.  STRESS-INTENSITY FACTORS VIA INTERPOLATION AND SPECIAL ELEMENTS 

4.  STRESS-INTENSITY FACTORS USING ENERGY METHODS 
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 CONVERGENCE REQUIREMENTS & OTHER REMARKS 
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CONVERGENCE REQUIREMENTS 

Sufficient conditions for convergence in linear elasticity problems solved 
using the FEM are C0 continuity and completeness of interpolation 
functions, i.e. their capability of  representing exactly constant strain 
solutions (or equivalently any linear displacement field) 
 
•  Inter-element continuity needed for finite energy of the approximation  

u(x) 

x x0 i i+1 
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CONVERGENCE REQUIREMENTS 

As mesh size (max size of element) h è 0, the strains in each element are 
almost constant. Consequently FEM interpolation must be able to 
represent any constant strain field and shape functions must be able to 
represent exactly an arbitrary linear displacement field (property known 
under the name: patch test) 
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REMARKS ON RIGID BODY MOTION 

Satisfying the patch test requirement, includes accounting for rigid body 
translations and infinitesimal rotations. 
 
Recall that FEM discretization can include arbitrary linear displacement 
fields: ui  = αij xj  + βi  and thus αij can include infinitesimal rotations 
(antisymmetric tensors Ωij = -Ωji) and βi accounts for translations 
 
NOTE: Small strain linear elasticity is invariant under infinitesimal 
strains but is not invariant under finite strains! 
 
For displacement field ui  = [Rij – δij]xj , you can easily see that the strains 
are εij = [Rij + Rji] that does not vanish for a finite rotation Rij 
 
NOTE: Finite strain theories are needed to correct this problem! 
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 SINGULARITIES OF NOTCHES (AND CRACKS) IN 2D 
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FRACTURE MECHANICS AND ASSOCIATED FEM TOOLS 
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Chapter 1

Introduction

Important aspects of technological and biological structures are stiffness and strength. Re-
quirements on stiffness, being the resistance against reversible deformation, may vary over a
wide range. Strength, the resistance against irreversible deformation, is always required to
be high, because this deformation may lead to loss of functionality and even global failure.

Fig. 1.1 : Stiffness and strength.

Continuum mechanics

When material properties and associated mechanical variables can be assumed to be con-
tinuous functions of spatial coordinates, analysis of mechanical behavior can be done with
Continuum Mechanics. This may also apply to permanent deformation, although this is as-
sociated with structural changes, e.g. phase transformation, dislocation movement, molecular
slip and breaking of atomic bonds. The only requirement is that the material behavior is
studied on a scale, large enough to allow small scale discontinuities to be averaged out.

1

Fracture plays an important role in engineering 
design. Inevitable flaws (in the form of cracks) can 
grow uncontrollably, if they exceed a certain size 
 
Pictures above are: from failure of US Schenectady 
(1943), de Haviland Comet (1950’s) and Flight 
AA587 (2001)   
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•  Linear Elastic Fracture Mechanics (LEFM) is a successful theory for 
designing against inevitable flaws in structures 

•  Stresses are infinite at ends of flaws (crack tips) but their known 
singularity has an amplitude called stress intensity factor 

•  The stress intensity factor is related to the energy required to advance 
the crack, a measurable material property (energy release rate). When the 
stress intensity factor is lower than the one corresponding to the critical 
energy release rate the crack does not advance 

•  In LEFM we calculate using FEM the stress intensity factor for a given 
structure and loading and check if it is less than its critical value 

•  LEFM is a successful theory for brittle solids where the process zone 
ahead of the crack tip is small compared to the flaw dimensions 

FRACTURE MECHANICS AND ASSOCIATED FEM TOOLS 
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In the absence of body forces, boundary value problems in 2D isotropic 
linear elasticity (plane stress or plane strain) and be found using the Airy 

stress function φ (equilibrium automatically satisfied). 

RECALL AIRY’S STRESS FUNCTION FOR 2D PROBLEMS 
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Interested in finding leading order terms near tip of elastic wedge: 

NOTCH PROBLEM – SINGULARITY NEAR TIP 

α 

α 
θ

r 
traction free  

edges 
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From stresses one can then calculate the corresponding displacements: 
NOTCH PROBLEM – SINGULARITY NEAR TIP 

NOTE: only displacement 
expressions depend on 
plane stress or strain (via 
Kolosov’s constant κ);  
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NOTCH PROBLEM – SINGULARITY NEAR TIP 
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NOTCH PROBLEM – SINGULARITY NEAR TIP 

λ-1 

2α 

α = π 

α = π 
θ
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α 
θ
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traction free  

edges 

For α =  π (crack) we still have 
symmetric and anti-symmetric 
solutions with λA = λS = 0.5 

For π/2 < α <  π (notch) we 
have symmetric and anti-
symmetric solutions with λA > λS  

Solving systems for symmetric (A1, A2) and anti-symmetric (A3, A4) case, we get the corresponding 
Airy stress functions φS and φA. The unknown coefficients A and B will be related with stress 
intensity factors K that depends on the geometry and loading of the structure. 

symmetric : A1 = A(�S � 1) sin[(�S � 1)↵], A2 = �A(�S + 1) sin[(�S + 1)↵],

�S = Ar�S+1 {(�S � 1) sin[(�S � 1)↵] cos[(�S + 1)✓]� (�S + 1) sin[(�S + 1)↵] cos[(�S � 1)✓]}

antisym. : A3 = B(�A + 1) sin[(�A � 1)↵], A4 = �B(�A + 1) sin[(�A + 1)↵],

�A = Br�A+1 {(�A � 1) sin[(�A � 1)↵] sin[(�A + 1)✓]� (�A + 1) sin[(�A + 1)↵] sin[(�A � 1)✓]}



Page 14 MEC557 – THE FINITE ELEMENT METHOD IN SOLID & STRUCTURAL MECHANICS – LECTURE 5 

CRACK PROBLEM – SINGULARITY NEAR TIP 

Mode I: symmetric solution (2D) 

18

2.3.3 Crack loading modes

Irwin was one of the first to study the behavior of cracks. He introduced three different
loading modes, which are still used today [33].

Mode I Mode II Mode III

Fig. 2.10 : Three standard loading modes of a crack.

Mode I = opening mode
Mode II = sliding mode
Mode III = tearing mode
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Mode II: anti-symmetric solution (2D) 

•  KI and KII are called the stress-
intensity factors in Mode-I and 
Mode-II loading. 

 
•  Crack propagates if they exceed a 

critical value  (fracture toughness) 
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CRACK PROBLEM – SINGULARITY NEAR TIP 

Mode I: symmetric solution (2D) Mode II: anti-symmetric solution (2D) 
The cartesian components of stresses and displacements near the crack tip are: 

x1 

x2 

σ11 
 

σ22 
 

σ12 
 

u1 

u2 NOTE: as rè0, the displacements uiè0 while the 
stresses σij è∞ in such a way that the energy stored 
at the entire solid is finite! 
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 STRESS-INTENSITY FACTORS VIA 
INTERPOLATION AND SPECIAL ELEMENTS 
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STRESS INTENSITY FACTOR USING EXTRAPOLATION 

Using an FEM discretization of the solid with acrack, we calculate the 
crack-opening-displacement (C.O.D.) using the displacement values 
obtained at its two faces and from the fitted parameters αI and αII (e.g. using 
least squares fit) we can evaluate the stress intensity factors KI and KII 

e1 

e2 

TOP (+) 

BOTTOM (-) 

θ
r 
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x1 

x2 

θ
r 

In order to calculate accurately the displacements near the crack tip, one can use 
special elements that are capable of accounting for r1/2 singularity. The simplest 
possible choice are the 6-node triangles where two of the nodes (5 and 6) are 
placed at ¼ the distance from the crack tip node (3) 
 
x6 = (1/4)x1 ,  x5 = (1/4)x2 ,  x4 = (1/2)(x1+x2)  
 
 

x2 

1 

2 

3 
4 5 

6 x1 

Actual (xi) space 

l36=(1/4)l31 

l35=(1/4)l32 

CRACK TIP ELEMENT WITH SINGULAR SHAPE FUNCTION 
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x1 

x2 

θ
r 

x6 = (1/4)x1 ,  x5 = (1/4)x2 ,  x4 = (1/2)(x1+x2) 
 
x1 = a e1, x2 =  b e1 + c e2 
 
x1 = (ξ1)2 [1+α][a+αb],   x2 = (ξ1)2 [1+α][αc] 
 
β = [αc]/[a+αb] depends only on geometry! 
 
Lines through 3 in parameter space map as lines in actual space! 
 
 

Shape functions for 
6-node triangles 
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CRACK TIP ELEMENT WITH SINGULAR SHAPE FUNCTION 
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x1 
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(b,c) x2=βx1 
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Parameter (ξi) space 

Recall: x1 = (ξ1)2 [1+α][a+αb],   x2 = (ξ1)2 [1+α][αc] 
 
r = [(x1)2 + (x2)2]1/2 = (ξ1)2 [1+α] γ (geometry-dependent constant) i.e. ξ1 =√(r/γ) 
 
u(x1, x2) = Σ ΝΙ (ξ1, ξ2) xI  = Σ ΝΙ (ξ1, αξ1) xI = u3 + f √(r/γ) + g (r/γ) 
 
Notice that the shape functions for the crack tip element are rich enough as to 
include the correct singularity for the displacement field 
 

CRACK TIP ELEMENT WITH SINGULAR SHAPE FUNCTION 
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 FEM CALCULATIONS IN A MODE I GRIFFITH CRACK 
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CRACK OF LENGTH 2a UNDER UNIAXIAL STRESSING (MODE I) 

An infinite strip of width 2b contains a crack at 
the center of length 2a. The strip is subjected 
to uniaxial stress σ22 = σ.  
 
Only one quarter is analyzed due to symmetry. 
 
σ22 (x1,0) = σ|x1|/((x1)2 - a2)1/2 (for bè∞) 
 
KI  = σ (πα)1/2 (for bè∞)  
 
u2 (x1,0) = [σ (κ +1)/4G] (a2 - (x1)2 )1/2 (for bè∞) 
 
NOTE: KI  = σ (πα/cos(πα/2b))1/2 (for finite b) 

2a 

2b 

θ
r

σ22=σ 

σ11=0 
x1 

σ22=σ 
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CRACK OF LENGTH 2a UNDER UNIAXIAL STRESSING (MODE I) 

Five different types of meshes were analyzed: 
 
A, B, C, D have simple constant strain triangles 
 
E is made of 6-node triangles, with the ones at 
the tip having the mid-node at quarter length 
 
 

A,E 

B 

B 

C D 
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CRACK OF LENGTH 2a UNDER UNIAXIAL STRESSING (MODE I) 

B mesh with a/10 size CST 

C mesh with a/33 size CST 

A mesh with a/3 size CST 

E mesh with a/3 6-node triangles  
(same mesh as A), but with crack-
tip elements that account for 
singular shape functions   

D mesh with a/100 size CST 

Calculation of σ22 (x1,0)   
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CRACK OF LENGTH 2a UNDER UNIAXIAL STRESSING (MODE I) 

B mesh with a/10 size CST 

C mesh with a/33 size CST 

A mesh with a/3 size CST 

E mesh with a/3 6-node triangles  
(same mesh as A), but with crack-
tip elements that account for 
singular shape functions   

D mesh with a/100 size CST 

Calculation of crack opening displacement u2 (x1,0)   
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 STRESS-INTENSITY FACTORS USING ENERGY METHGODS 
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ENERGY RELEASE RATE DUE TO PROPAGATING CRACK 
An advancing crack creates new surface and requires 
energy/length J, thus reducing the solid’s pot. energy U 
 
Need to calculate change of energy due to domain D(τ) 
change: y = x + τ z(x) where z(x): initial velocity of 
transformation. For crack along x1, take z(x) = z1(x) e1 
 
Assumptions: u(x) is the actual equilibrium displacement, there are no body forces 
 

z1 =0 

z1 =1 

1 > z1 > 0 

D0 

D1 

R Γ0  
 

Γ1  
 

Γ+  
 Γ-  

 

Path-invariant J-integral 
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ENERGY RELEASE RATE DUE TO PROPAGATING CRACK 

Stress intensity factor(s) can be found numerically using 
the FEM discretized solution (and numerical integration) 
over a domain R that does not contain the singularity. 

R 


