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TOPICS COVERED IN THIS LECTURE 

 

1.  BAR MODEL (1D) – LINEAR (REVIEW) AND HIGHER ORDER ELEMENTS 

2.  BAR MODEL (1D) – MASTER ELEMENT & ISOPARAMETRIC INTERPOLATION 

3.  PLANAR TRUSSES (2D) 

4.  SPACE FRAMES (3D) 

5.  THERMAL LOADING OF TRUSSES 

 

 

MEC 557 – FINITE ELEMENT METHOD IN SOLID MECHANICS 
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ONE DIMENSIONAL BAR – RALEIGH-RITZ METHOD 

Numerical solution of equilibrium problem – Raleigh-Ritz method: 
Instead of minimizing energy in an infinite dimensional space, we do 
minimize in a finite dimensional space, in which case we end up with an 
algebraic problem. Since energy in quadratic in u(x), system is linear! 
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ONE DIMENSIONAL BAR – RALEIGH-RITZ METHOD 

 
Stiffness matrix: K,   Force vector: F,   Degrees of Freedom: Q 
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ONE DIMENSIONAL BAR – FINITE ELEMENT METHOD 

 
Easy physical interpretation of d.o.f. (degree of freedom) Qi  at node xi: due to 
its construction, uapp(xi) = Qi 
 
Shape functions Ni(x) have compact support: Ni(xi) = 1, Ni(xi-1) = Ni(xi+1) = 0. 
Compactness of support of shape function great advantage of FEM    
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ONE DIMENSIONAL BAR – BANDED STIFFNESS MATRIX 

 
Stiffness matrix K is banded, i.e. populated about the diagonal. Note that 
the F.E.M. (compact support) shape functions Ni(x) do not have to be 
piecewise linear, as calculated above; a wide selection is possible.  
We will show here how we can generalize to higher order polynomials.  
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Element stiffness ke (m × m) & force fe (m) for (m-1) polynomial interpolation 

ONE DIMENSIONAL BAR – ELEMENT STIFFNESS, FORCE 
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ONE DIMENSIONAL BAR – QUADRATIC INTERPOLATION 

1
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Case m=3 (2nd order polynomial interp.) 
 
uapp(x) = q1N1(x) + q2N2(x) + q2N2(x) 
 
Local degree of freedom qT

e = [q1, q2, q3] 
 
In each element: uapp(xi) = qi  (i=1,2,3) 
 element #   i 
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Case of a quadratic polynomial interpolation (m=3) 
 

Recall requirement: uapp(xi) = q1N1(xi) + q2N2(xi) + q2N2(xi) = qi  
 

You see now the easy extension to higher order interpolation! 

ONE DIMENSIONAL BAR – QUADRATIC INTERPOLATION 
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Case of a cubic polynomial interpolation (m=4) 

ONE DIMENSIONAL BAR – CUBIC INTERPOLATION 
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ONE DIMENSIONAL EXAMPLE – ASSEMBLE STIFFNESS, FORCE 
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Assembling global stiffness matrix 
K and global force vector F from 
element stiffness matrix ke and 
element force vector fe : add local 
components in the appropriate place 
of global counterparts (for quadratic 
polynomial interpolation, m=3)  
 
local no.èglobal no. 
 
1è0,  2è1,  3è2 for element 1 

1è2,  2è3,  3è4  for element 2 

1è4,  2è5,  3è6  for element 3 

1è6,  2è7,  3è8  for element 4 
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ONE DIMENSIONAL BAR – MASTER ELEMENT 

It is very convenient to write shape functions in a master element with 
respect to a normalized coordinate (ξ)

x = 0 x = 1

x = -1 x = 0 x = 1

i = 1 i = 2 

i = 1 i = 2 i = 3 



Page 12 MEC557 – THE FINITE ELEMENT METHOD IN SOLID & STRUCTURAL MECHANICS – LECTURE 2 

ONE DIMENSIONAL BAR – ISOPARAMETRIC CASE 

Question: what do we choose for x(ξ)? 
 
Answer: (easy) same representation as for displacement! 
 
This type of parametrization that uses the same interpolation 
scheme for both the displacement and the geometric coordinates 
is called isoparametric representation and is widely used in F.E.M. 
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TRUSSES (AXIALLY LOADED BAR STRUCTURES) 

TRUSSES are structures made of bars connected to the rest of the 
structure by a pin joint at each end; a joint that can transmit forces but 
cannot transmit moments. As a result, moment equilibrium of the bar 
dictates that the bar is under axial forces only, since the bars have no 
distributed loads. Loading is only applied at the nodes of the structure. 
 
Most engineering structures have a skeleton made of long beams 
connected to each other and on which a skin is sometimes added (roof 
structures, tubular design in cars, aircraft fuselage, satellites etc.) and 
sometimes not (bridges, grid transmission towers – even the Eiffel tower). 
A truss approximation of these structures (which assumes only axial forces 
in members and forces on nodes – but no moments – is a very useful first 
approximation on engineering to do preliminary design studies. 
 
F.E.M. ideas apply here (linear elastic structure, small deformation and 
displacement linear kinematics) with each bar being an element.   
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TRUSSES (AXIALLY LOADED BAR STRUCTURES) 

TRUSS EXAMPLES IN 2D AND 3D 
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PLANAR TRUSSES (AXIALLY LOADED BAR STRUCTURES IN 2D) 

L = 1m 

A = 10-4 m2 

E = 210GPa 

N = 6kN 

Min. force: -41.57 kN 
Min. strain: -1.979 ×10-3 

Max. force: 43.30 kN 
Max. strain: 2.062 ×10-3 

Max. displ: 17.61 mm 
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PLANAR TRUSSES (AXIALLY LOADED BAR STRUCTURES IN 2D) 
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SPACE TRUSSES (AXIALLY LOADED BAR STRUCTURES IN 3D) 

         

         

L = 1m 

A = 10-4 m2 

E = 210GPa 

N = 6kN 

Max. displ: 1.338 mm 

Min. force: -7.826 kN 
Min. strain: -3.727 ×10-4 

Max. force: -3 kN 
Max. strain: -1.429 ×10-4 

Gravity loading of roof 
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SPACE TRUSSES (AXIALLY LOADED BAR STRUCTURES IN 3D) 
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SPACE TRUSSES (AXIALLY LOADED BAR STRUCTURES IN 3D) 

         

         Max. displ: 
1.474 mm 

Max. force: 7.826 kN 
Max. strain: 3.727 ×10-4 

Min. force: -7.826 kN 
Min. strain: -3.727 ×10-4 

Wind loading of roof 
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SPACE TRUSSES (AXIALLY LOADED BAR STRUCTURES IN 3D) 
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SPACE TRUSSES (AXIALLY LOADED BAR STRUCTURES IN 3D) 

         

         

What happens when we change 
support conditions? (e.g. choose 
four ground nodes to be on 
rollers – no in-plane reactions) 
 
Notice that the static problem is 
ill conditioned (det K = 0) and 
cannot be solved 
 
Structure is a mechanism! We 
can see what happens when we 
solve the dynamic problem… 
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SPACE TRUSSES (AXIALLY LOADED BAR STRUCTURES IN 3D) 
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MECHANISMS, ISOSTATIC AND HYPERSTATIC TRUSSES 

A truss is a mechanism (det K = 0) when the number of available 
equilibrium equations exceeds the number of unknowns 
(spatial dimension) × (nodes) > (bars) + (reactions)  
 
A truss is a isostatic (also termed statically determinate) structure when 
the number of available equilibrium equations equals the number of 
unknowns; in this case you do not need the material properties of the bars, 
equilibrium equations suffice to solve the problem where bar forces that 
depend only on geometry! 
(spatial dimension) × (nodes) = (bars) + (reactions) 
 
A truss is a hyperstatic (also termed statically indeterminate) structure 
when the number of available equilibrium equations is less than the 
number of unknowns; in this case bar forces depend on material properties 
(spatial dimension) × (nodes) < (bars) + (reactions)  
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SPACE TRUSSES (AXIALLY LOADED BAR STRUCTURES IN 3D) 

Gravity loading of roof 
Modified structure that  
allows roller supports 

         

         

Max. displ: 3.228 mm 

Min. force: -7.826 kN 
Min. strain: -3.727 ×10-4 

Max. force: 12.12 kN 
Max. strain: 5.774 ×10-4 

(3) × (13) = (30) + (9) 
Isostatic structure, forces 
independent on bar material! 
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SPACE TRUSSES (AXIALLY LOADED BAR STRUCTURES IN 3D) 
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SPACE TRUSSES (AXIALLY LOADED BAR STRUCTURES IN 3D) 

Wind loading of roof 
Modified structure that  
allows roller supports 

         

         

Max. displ: 
2.625 mm 

Max. force: 11.74 kN 
Max. strain: 5.590 ×10-4 

Min. force: -12.16 kN 
Min. strain: -5.790 ×10-4 
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SPACE TRUSSES (AXIALLY LOADED BAR STRUCTURES IN 3D) 
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SPACE TRUSSES (AXIALLY LOADED BAR STRUCTURES IN 3D) 

FORMULATION OF THE TRUSS PROBLEM 
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KINEMATIS OF A (UNIFORM SECTION) TRUSS BAR 

d1 , d2 , axial displacements of bar 
 
bar elongation: d2 - d1 
 

di  projection of displacement qi at node i 
 
axial strain of element e :  εe = (d2 - d1)/le 
 

ne unit vector of element e 
  

 qe
T = [q1x, q1y,  q2x, q2y],  ne = [n1x, n1y] = [cos(θe), sin(θe)]  in 2D   

 
qe

T = [q1x, q1y, q1z, q2x, q2y, q2z],  ne = [n1x, n1y, n1z]  in 3D    
    

node 1 

node 2 
ne 

d1 

d2 

q1 

q2 

θe 
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ELEMENT STIFFNESS MATRIX OF A TRUSS 
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PLANAR TRUSS EXAMPLE – GLOBAL STIFFNESS 

Uniform section bars (same EA) 

θa  = π/2   for element a 
 
θb  = π/2   for element b 
 
θc  = π/4   for element c 
 
θd  = 3π/4   for element d 
 
θe = 0   for element e 
 
 
 
 
 
 
 

node 1 node 2 

node O node O 

bar a bar b 

bar e 

bar c bar d 

Q1 Q2 

F1 F2 

na nb 

ne 

nc nd 

L 

L 
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PLANAR TRUSS EXAMPLE – ELEMENT STIFFNESSES 
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SOLUTION OF THE PLANAR TRUSS EXAMPLE 
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SOLUTION OF THE PLANAR TRUSS EXAMPLE 

Axial forces in each bar Ne = EA(d2-d1)/le 

 
Na  =  P (4√2+1)/(4√2+3)  tensile 
 
Nb  =  P (4√2+1)/(4√2+3)  tensile 
 
Nc  = 2√2 P /(4√2+3)  tensile 
 
Nd  = 2√2 P /(4√2+3)  tensile 
 
Ne =  -2 P /(4√2+3)  compressive 
 
 
NOTE : Symmetric loading produces symmetric deformation & forces 
 
 
 
 
 
 
 

bar a bar b 

bar e 

bar c bar d 

Q1 Q2 F1 F2 
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THERMAL LOADING OF TRUSSES 

NOTE : Taking into account thermal loading 
 
 
 
 
 
 
 
 
 

α: thermal expansion coefficient, ΔT: temperature change 
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ANNOUNCEMENT 
For students in PA in Mechanics (MEC 592, MEC 595), 
I will be at your disposal on October 05 at 11:am in 
Amphi MONGE to talk to you about internships in 
Mechanics. 
 
I will also inform you about a dual MS degree program 
with Caltech (Departement de Mecanique at X and 
Aerospace Engineering at Caltech) which concerns 
students interested in pursuing a Doctorate degree in 
either Fluid Mechanics or Solid Mechanics back here 
(LadHyx or LMS) and talk about similar possibilities 
exist with University of Minnesota  for Aerospace and 
Civil Engineering (LMS)  


