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WHAT IS THE FINITE ELEMENT METHOD? 
RALEIGH-RITZ NUMERICAL SOLUTION TECHNIQUE IN APPLIED MATHEMATICS: 

l  IDEA STARTED WITH VIBRATION THEORY: FOR CONTINUUM PROBLEMS WITH AN 
ENERGY, USE SHAPE FUNCTIONS TO CONVERT INFINITE DIMENSIONAL PROBLEM 
TO A DISCRETE ONE THAT CAN BE SOLVED WITH MATRIX ALGEBRA (1909) 

l  BY ABOUT 1970’s PEOPLE REALIZED THAT THE APPROXIMATE ENGINEERING F.E.M. 
TECHNIQUE WAS A RALEIGH-RITZ METHOD WITH INGENIOUS SHAPE FUNCTIONS OF 
COMPACT SUPPORT 

THE REST IS THE HISTORY OF ONE OF THE GREATEST CONTRIBUTIONS OF 
MECHANICS AND APPLIED MATHEMATICS TO MODERN EGINEERING TECHNOLOGY 

l  APPROACH THAT STARTED WITH LINEAR ELASTICITY WAS EXTENDED TO THE 
MOST GENERAL TYPE OF NONLINEAR, INELASTIC SOLIDS & STRUCTURES 

l  METHOD IS APPLICABLE TO A WIDE CLASS OF BOUNDARY PROBLEMS BUT IS BEST 
SUITED FOR ELLIPTIC PROBLEMS  

l  FINITE ELEMENTS TECHNOLOGY IS ONE OF THE MOST IMPORTANT CONTRIBUTIONS 
OF MECHANICS THAT REVOLUTIONIZED ENGINEERING TECHNOLOGY 
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TOPICS COVERED IN THIS CLASS 
1.  INTRODUCTION TO THE FINITE ELEMENT METHOD USING 1-D MODELS.  

2.  CHOLESKY METHOD FOR SOLVING LINEAR SYSTEMS. 

3.  TRUSSES AND FRAMES IN 2D AND 3D. 

4.  VARIATIONAL FORMULATION FOR LINEAR ELASTICITY B.V.P. 

5.  PLANE STRESS/STRAIN PROBLEMS USING CONSTANT STRAIN TRIANGLES. 

6.  ISOPARAMETRIC ELEMENTS FOR 2D PROBLEMS.  

7.  NUMERICAL INTEGRATION, GENERALIZATION TO 3D PROBLEMS. 

8.  HIGHER ORDER GRADIENT ENERGIES: BEAMS (1D) AND PLATES (2D). 

9.  LOCKING PHENOMENA AND SOLUTION PROCEDURES. 

10.   OTHER PHYSICS PROBLEMS (ELECTROSTATICS, HEAT TRANSFER). 

11.  TIME-DEPENDENT ANALYSES, EIGENMODES 

12. EXTENSION TO NON-LINEAR PROBLEMS (INCREMENTAL NEWTON-RAPHSON) 
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WHAT IS THE FINITE ELEMENT METHOD? 
POWERFULL NUMERICAL METHOD TO SOLVE PROBLEMS IN SOLIDS & STRUCTURES 

l  STARTED FROM MATRIX PROBLEMS (FRAMES) IN AIRCRAFT STRUCTURES (1940’s) 

l  CONTINUED AS A EURISTIC METHOD FOR ELASTIC BODIES, PARTITIONING SOLIDS 
USING A SIMPLEX GRID (TRIANGLES IN 2D, TETRAHEDRA IN 3D, TERMED FINITE 
ELEMENTS) AND SATISFYING EQUILIBRIUM THROUGH NODAL FORCES 
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FEM SOLUTION OF A LINEARLY ELASTIC PROBLEM 
CONSTANT STRAIN TRIANGLE FINITE ELEMENT MESH FOR A PLANE STRAIN PROBLEM 

SOLVED USING A COMMERCIAL CODE (ABAQUS – NOT AVAILABLE FOR THIS CLASS) 
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FEM SOLUTION OF A LINEARLY ELASTIC PROBLEM 
CLAMPED AT X = 0, NORMAL FORCES PRESCRIBED AT X = L – NORMAL STRESSES σ11 
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FEM SOLUTION OF A LINEARLY ELASTIC PROBLEM 
ROLLERS AT X = 0, NORMAL DISPLACEMENT PRESCRIBED AT X = L – NORMAL STRESSES σ11 
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FEM SOLUTION OF A LINEARLY ELASTIC PROBLEM 
CLAMPED AT X = 0, NORMAL FORCES PRESCRIBED AT X = L – NORMAL STRESSES σ22 
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FEM SOLUTION OF A LINEARLY ELASTIC PROBLEM 
ROLLERS AT X = 0, NORMAL DISPLACEMENT PRESCRIBED AT X = L – NORMAL STRESSES σ22 
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FEM SOLUTION OF A LINEARLY ELASTIC PROBLEM 
CLAMPED AT X = 0, NORMAL FORCES PRESCRIBED AT X = L – SHEAR STRESSES σ12 

CLAMPE 
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FEM SOLUTION OF A LINEARLY ELASTIC PROBLEM 
ROLLERS AT X = 0, NORMAL DISPLACEMENT PRESCRIBED AT X = L – SHEAR STRESSES σ12 
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POWERFULL CODES PRODUCE NICE PICTURES, BUT 

1. What is the code behind them? 

2. Can you trust that simulation is done correctly? 

3. You need to understand your model! Very frequently the code 
gives correct results but you are unable to interpret them… 

4. Of course more frequently you translate your math/mechanics 
problem to a wrong or inadequate algorithm! 

5. Goal of the class to help you understand mechanics and how 
we translate the mathematical model to a functioning algorithm 

6. NECESSARY CONDITION: Understand your mechanics! 
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ONE DIMENSIONAL EXAMPLE – DIRECT METHOD 

axial force: N 

N + dN 

f dx = rgA(x) dx 

x 

displacement: u(x) 

gravity: g 

L

section area: A(x) 

Must solve above 2nd order O.D.E. with boundary conditions… 
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ONE DIMENSIONAL EXAMPLE – ENERGY METHOD 

QUESTION: is there  more efficient way to formulate & solve this B.V.P.? 
 
ANSWER: use potential energy minimization (variational method) 

CLAIM: of all admissible displacement fields u(x), i.e. continuous 
functions that satisfy the essential boundary condition: u(0) = 0, the actual 
equilibrium solution minimizes the potential energy functional P (u(x)) 
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ONE DIMENSIONAL EXAMPLE – ENERGY METHOD 

QUESTION: how to minimize functional P (u(x)), to find equilibrium  ueq(x)? 
 
ANSWER: convert to the regular minimization you know! (Gateau derivative) 
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ONE DIMENSIONAL EXAMPLE – ENERGY METHOD 
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ONE DIMENSIONAL EXAMPLE – RALEIGH-RITZ METHOD 

WE PROVED: of all admissible displacement fields u(x), i.e. continuous 
functions that satisfy the essential boundary condition: u(0) = 0, the actual 
equilibrium solution ueq(x) minimizes the potential energy functional P (u(x)). 
 
As expected, we obtained a differential equation (Euler-Lagrange) plus an 
additional – to the essential – boundary condition (natural bound. cond.). We 
provided a better formulation but we have not solved the problem! 
 
The better formulation gives the key to the numerical solution: instead of 
minimizing energy in an infinite dimensional space, we should minimize in a 
finite dimensional space, in which case we end up with an algebraic problem. 
Thus we use an approximate displacement uapp(x) – which involves a finite 
number of variables Qi (i=1, …n) – and minimize P (Q) with respect to Q.     
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ONE DIMENSIONAL EXAMPLE – RALEIGH-RITZ METHOD 

 
Stiffness matrix: K,   Force vector: F,   Degrees of Freedom: Q 
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ONE DIMENSIONAL EXAMPLE – FINITE ELEMENT METHOD 

 
Easy physical interpretation of d.o.f. (degree of freedom) Qi  at node xi: due to 
its construction, uapp(xi) = Qi 
 
Shape functions Ni(x) have compact support: Ni(xi) = 1, Ni(xi-1) = Ni(xi+1) = 0. 
Compactness of support of shape function great advantage of FEM    

1

0 1 2 i–1 i i+1 n1 2 i–1 i

element # i

d.o.f. # i

0 1 2 i–1 i i+1 n

Shape function
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ONE DIMENSIONAL EXAMPLE – BANDED STIFFNESS MATRIX 

 
Stiffness matrix K is banded, i.e. populated about the diagonal. This structure, 
due to the compactness of shape functions, has great advantages in both 
solution time and storage requirements. An efficient algorithm, under the name 
of Cholesky (André-Louis Cholesky X-1895 ) decomposition, takes advantage 
of the banded structure of K.  
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ONE DIMENSIONAL EXAMPLE – CHOLESKY DECOMPOSITION 

Cholesky decomposition (unique), K = LDU (lower triangular, diagonal, 
upper triangular matrices) that have same skyline structure as K. Method 
valid for arbitrary matrices. When K = KT, then LT = U (half storage needed)  
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ONE DIMENSIONAL EXAMPLE – CHOLESKY ALGORITHM 

NOTE: Cholesky decomposition need only be done once with L & D 
components stored in place of K! We can then solve the same structure under 
different loads F simply by doing forward & back substitution again & again 
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ONE DIMENSIONAL EXAMPLE – CHOLESKY ALGORITHM 

Recall Cholesky decomposition algorithm (symmetric case): 

As algorithm progresses, new entries Lij and Dii are stored in Kij and Kii slots 
respectively since these elements of stiffness matrix will not be needed again: 

Check: A positive definite K (correct linear elasticity b.v.p.) results in Dii > 0 
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In element i: uapp(x) = q1N1(x) + q2N2(x) 
 
Local degree of freedom qT

e = [q1, q2] 
 
We find element contribution to global 
stiffness matrix K and force vector F  
 
 

ONE DIMENSIONAL EXAMPLE – ELEMENT STIFFNESS, FORCE 

uapp

ii� 1

q1 ⌘ Qi�1 q2 ⌘ Qi

1

1 N1(x) 

N2(x) 0 1 2 i–1 i i+1 n1 2 i–1 i

element # i

d.o.f. # i
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Finding element stiffness matrix ke and element force vector fe in the structure 

ONE DIMENSIONAL EXAMPLE – ELEMENT STIFFNESS, FORCE 
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ONE DIMENSIONAL EXAMPLE – ELEMENT STIFFNESS, FORCE 

Relating element stiffness matrix 
ke to global stiffness matrix K 
and element force vector fe to 
global force vector F 
 
qe local d.o.f. vector 
Q global d.o.f. vector 
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i j

i

j

ke11 ke12

ke21 ke22

fe
1 fe

2

Assembling global stiffness matrix 
K and global force vector F from 
element stiffness matrix ke and 
element force vector fe  
 
RULE: for each element e add to 
global stiffness matrix & force 
vector the components in the 
appropriate places recalling local to 
global numbering 
 
 
1èi, 2èj for this 2-node element 
 
 

ONE DIMENSIONAL EXAMPLE – ASSEMBLE STIFFNESS, FORCE 
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ONE DIMENSIONAL EXAMPLE – ASSEMBLE STIFFNESS, FORCE 

Uniform section bar has 4 equal 
length elements (le = L/4) 

Q0 = 0, 
solve 4 × 4 
system 
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Nodal values Qi are correct (just here) 

ONE DIMENSIONAL EXAMPLE – FEM SOLUTION 


