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a b s t r a c t

The paper discusses the lifetime prediction of structures in high-cycle fatigue based on the two-scale
fatigue criteria of Dang Van type and several of its extensions in finite lifetime regime. The main assump-
tions for this criteria are (i) the material is polycrystalline and undergoes localised plasticity in one of the
misoriented grains and (ii) crack initiation arises as a consequence of cumulated plasticity in this grain.

The novelty of the presented approach is twofold. On the one hand a generalisation of mesoscopic plas-
ticity model is presented, on the other a fast time scale average is introduced for tracking the cyclic mate-
rial behaviour and the subsequent evolution of damage. The tracking method is based on the split
between a quick quasi-periodic response of the system to the cyclic load and a slow evolution of the
internal hardening and damage parameters of the material at the mesoscopic scale. The proposed method
can be extended to a large class of local material behaviours involving not only plasticity, but also crack
and damage evolution.

The paper proposes a simplified plasticity-based model for the mesoscopic material behaviour and pre-
sents a comparison between predicted and experimental lifetimes. The results are discussed in terms of
prediction capabilities and also in terms of the identification procedure of parameters of the mesoscopic
model.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

A series of fatigue prediction models for the cyclic behaviour of
structures is based on multiscale analysis. These try to bridge the
gap between the fine evolution of the defects at the scale of the
microstructure and the load transmitted from the macroscopic
scale of the structure. The analysis usually involves homogenisa-
tion techniques for the smaller scales and is based on the concept
of shakedown. This amounts to characterising the cyclic behaviour
through an asymptotic limit cycle, which is either plastic or elastic
denoting respectively presence or absence of dissipation.

This paper addresses the question of finite lifetime in the high cy-
cle fatigue (HCF) regime for metallic polycristalline materials. Within
HCF, it is common to assume that the structure is in elastic shake-
down at the macroscospic scale but undergoes elastic or plastic
shakedown at the mesoscale (i.e. scale of the grains) for infinite or
finite lifetime respectively. In the case of finite lifetime, we will refer
to the time to failure of the material with the expression lifetime.

In this general framework, the initial fatigue criterion proposed
by Dang Van (DVK) in [6] (and extended in [21–25]) has been
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highly successful in predicting the infinite lifetime of structures.
The DVK fatigue criterium decides whether or not the structure
will have an infinite lifetime by considering the shakedown limit
of the slip system in the different grains. This approach was ex-
pressed later in a more general term through the Melan–Koiter
shakedown theorem (see [7,19] and references therein). The
hydrostatic stress is considered in order to account for the local
heterogenous structure. This has only recently been justified using
a precise homogenisation procedure [3,15].

In order to give quantitative estimates of the lifetime, several
extensions of the DVK criterion have been proposed. Among others
we recall the models of Morel [16,17] and of Maitournam et al.
[11,13]. In the first case, a simple mesoscopic plastic model is
introduced. The evolution of the cumulated plastic strain up to fi-
nal failure at the mesoscopic level is evaluated to effectively pre-
dict lifetime under cyclic and variable loading. The second model
differs from this approach by (i) proposing a mesoscopic plastic
model depending on the hydrostatic stress component to account
for the damage process; (ii) estimating the plastic shakedown cycle
at the mesoscopic scale using a classical fatigue criterion based on
the range of plastic strain.

The extension discussed in this paper is constructed under sim-
ilar assumptions to those of Morel’s model [16,17]. However, it is
grounded on a generalisation of the mesoscopic plasticity model
and introduces a new fast time scale average for tracking the cyclic
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Nomenclature

A localisation tensor
b mesoscopic kinematical hardening vector
C macroscopic elasticity tensor
c mesoscopic elasticity tensor
c kinematic hardening parameter
E macroscopic strain
Ep macroscopic plastic strain
f�1 fatigue limit under fully reversed tension compression
L macroscopic compliance tensor
l mesoscopic compliance tensor
p mesoscopic hydrostatic stress
SH

max maximal hydrostatic stress during one loading cycle
T macroscopic resolved shear stress
DT amplitude of the macroscopic resolved shear stress
DT0 amplitude of the macroscopic resolved shear stress on

the critical plane for limit loading

Ta amplitude of the mesoscopic resolved shear stress
t�1 fatigue limit under fully reversed torsion
� mesoscopic strain
�p mesoscopic plastic strain
�p

d deviatoric part of the mesoscopic plastic strain
�pc cumulated mesoscopic plastic strain
C cumulated plastic mesostrain
cp mesoscopic shear plastic strain
k;l macroscopic Lamè parameters
R macroscopic stress
r mesoscopic stress
rm

xx mean normal stress in the x direction
ra

xx amplitude of the normal stress in the x direction
s mesoscopic resolved shear stress
sy shear yield limit of a crystal
sa

xy amplitude of xy shear component of stress tensor

Fig. 1. Path of the macroscopic shear stress on the material plane identified by n at
the point O and the corresponding path of the macroscopic resolved shear stress T
acting on a glide direction.
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material behaviour and the subsequent evolution of damage. This
separation of time scales is justified by the great number of cycles
usually considered in HCF experiments (104–107 cycles). The cyclic
material behaviour can be viewed as the succession of (a) a short
hardening (or softening) transient up to a saturation point, (b) a
long phase close to a stable cycle and (c) a final brief softening pre-
dicting failure. The long transient observed in the second phase
above can be described through the theory of dynamical systems
as the presence of a saddle-node ghost (see [26] and references
therein) and is therefore amenable to precise analytical study.

The paper starts with a short presentation of the two scale mod-
el used in the HCF theory. We then introduce three different con-
stitutive laws and the relative techniques to compute lifetimes.
In particular we discuss: (i) Maitournam’s et al., (ii) Morel’s, and
(iii) the present model. Sections 2 and 3 discuss the main analytical
tools from dynamical systems theory, namely separation of time-
scales and saddle-node ghost estimates. In Section 4 the identifica-
tion method for the parameters of the model is detailed. Finally
Sections 5 and 6 present the prediction capabilities for experi-
ments extracted from literature and conclusions. An appendix
completes the presentation with an extended computation of the
lifetime using the saddle-node ghost estimates.

2. The models at the mesoscopic scale

In the framework of HCF for metallic polycristalline materials,
one can assume that only a few grains of the material undergo
plastic deformations whilst most of the material remains elastic.
We can therefore consider the material point at the macroscopic
scale as a representative elementary volume (REV) at the meso-
scopic scale. This volume is a non-homogeneous medium, which
can be assimilated under the given assumptions to an elastic ma-
trix and an elasto-plastic inclusion (grain).

The loading of the REV, i.e. macroscopic stresses R and strains E,
can be computed in the framework of the standard continuum the-
ory (macroscale) and will be considered as given in this work. In
order to evaluate the mesoscopic state, i.e. mesoscopic stresses r
and strains �, several homogenisation techniques have been con-
sidered in the literature. The models of Bui, Lin–Taylor, Kröner–
Budansky–Wu and Sachs have been described in relation with
the DVK fatigue criterion for example in [2,7,11,13].

Without restraining the generality, we shall adopt here the
Lin–Taylor’s homogenisation scheme, which is based on the equal-
ity of macroscopic and mesoscopic strain:

� ¼ E:
As pointed out by Dang Van (see [5,7] and references therein), when
dealing with the description of HCF, Lin–Taylor’s approximation is
particularly effective as it permits to accept the existence of meso-
scopic plastic strain and residual stress fields. Therefore, we will
limit the presentation to this particular case.

Let us denote by C and c the macroscopic and mesoscopic elas-
ticity tensor, and by L and l the macroscopic and mesoscopic com-
pliance tensors. For completeness reasons we also introduce both
the mesoscopic plastic strain tensor �p and the macroscopic plastic
strain tensor Ep. However, as in HCF the structure is in elastic
shakedown at the macroscopic level, it follows that (see Fig. 1)

Ep ¼ 0:

With this notation the main assumptions of Lin–Taylor’s model are
equality of macroscopic and mesoscopic elasticity tensors and
equality of the respective strains:

C ¼ c E ¼ �:

Assuming that the behaviour at the macroscopic scale is purely
elastic, from the expressions of the elastic Hooke’s law at the mac-
roscopic and mesoscopic scale we deduce

r ¼ AR� ACð�p � EpÞ ð1Þ

where the fourth-order tensor A is the localisation tensor defined by

A¼: c : L:



Fig. 2. Scheme for the evolution of the yield limit (continuous line) and of the
damage (cumulated plastic mesostrain—dashed line) in function of the number of
cycles. The material behaviour involves a hardening phase (I), a saturation phase (II)
and a final softening (III). Recall that under periodic loading, number of cycles and
time are equivalent up to a constant factor.
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The next step in the modelling is the introduction of a suitable
material behaviour at the mesoscopic scale in order to take into ac-
count fatigue. The experimental evidence leads to consider a three-
phase model involving an initial hardening (or softening) phase, fol-
lowed by a stable saturation phase and a final softening [18,16,17]
as schematically displayed in Fig. 2. Under these assumptions, fail-
ure corresponds to vanishing mesoscopic yield limit. As the yield
limit is directly related to the cumulated plastic mesostrain, de-
noted by C hereafter (see Eq. (8) below), one can also express failure
as limit of cumulated plastic mesostrain eC:

C ¼ eC:
We recall that cumulated plastic mesostrain is a monotonic increas-
ing function of the number of loading cycles the system has en-
dured and that the plastic models considered here are rate
independent. Therefore, it can be appropriately chosen as an inde-
pendent variable to represent the evolution of the yield limit in-
stead of time or of number of cycles. This approach will be
followed in the present formulation (see also Fig. 3 later on).

Assuming further that only one glide plane is active for any
plastically deforming inclusion of the medium (grain), it has been
shown in [22] that relation (1) for a perfectly elastic matrix can
be reduced to

s ¼ T� lcpm ð2Þ

where T and s are the macroscopic and mesoscopic resolved shear
stresses acting along the slip direction m of the plane identified by
its normal n and l is the shear modulus of the k;l Lamè constants
[4,9]. Explicitly the later are defined by:

T ¼ ðm� n : RÞm
s ¼ ðm� n : rÞm:

The mesoscopic plastic model is now determined by defining:

� the yield function f ðs;b; syÞ
� the hardening rule, assumed to be in the general form
_sy ¼ gðCÞ _C ð3Þ
which implies by integration that
sy ¼ GðCÞ ð4Þ
where G is a suitable primitive function of g.

If this plastic model is brought into the three-phase description of
cyclic material behaviour previously introduced, one has to require
G to be a concave function increasing when C is small and decreas-
ing for larger values of the mesoscopic shear plastic strain. More-
over there will be a unique value for the cumulated plastic
mesostrain denoted by eC for which the following hold:

GðeCÞ ¼ 0; GðeCÞ0 < 0: ð5Þ
In this terms, the lifetime defined as the failure of the REV, or equiv-
alently as the initiation of a macroscopic crack is defined as the un-
ique time instant et for which

Cðet Þ ¼ eC:
As a consequence of the definition of eC, one can equally express the
lifetime by a vanishing plastic yield at the mesoscale (see (4)).

A large panel of choice for the definition of the yield function f
and for the evolution of the yield limit sy is possible. Among the
different models proposed in the literature, we shall only recall
the proposals of Maitournam et al. and the one of Morel.

2.1. Maitournam’s model [13]

The proposal of this model is to consider a plastic material
behaviour at the mesoscale with a dependence of the yield func-
tion not only on the deviatoric part of the stress but also on the
hydrostatic part. A kinematic hardening under the assumptions
of associative plasticity is also considered. The mesoscopic yield
function can therefore be written as

f ðr;�p
d;pÞ¼

:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðr� h�p

dÞ : ðr� h�p
dÞ

r
� kðpÞ

with

kðpÞ ¼ b� apðtÞ or kðpÞ ¼
b� ap if p P 0
b� cp if p < 0

�
and where p is the mesoscopic hydrostatic stress, �p

d the deviatoric
part of the mesoscopic plastic strain tensor and a;b; c and h are suit-
able parameters.

The underlying hypothesis of this model consider that the mes-
ostructure can be computed from the macroscopic structure. Fati-
gue will then be determined from the plastic shakedown cycle and
from a phenomenological fatigue law linking lifetime and cumu-
lated mesoscopic plastic strain (�pc):

N ¼ gð�pcÞ:

which is a Manson–Coffin type fatigue criterion.

2.2. Morel’s model [16,17]

This model considers a complete description for the mesoscopic
plastic yield limit as introduced above. Three sharply separated
phases account for the hardening of the mesoscopic inclusion.
The dependence of the yield limit on plastic strain is piece-wise
linear (see Fig. 3). Moreover, the yield function is defined in terms
of the resolved shear stress and has both isotropic and kinematic
hardening terms:

f ðs;b; syÞ ¼ ðs� bÞ � ðs� bÞ � s2
y : ð6Þ

In this case, the three phase of the plastic inclusion are defined as:

_sy ¼
g _C during hardening;

0 during the saturation phase;

�h _C during softening;

8><>: ð7Þ

_b ¼ c _cp

where cp is the mesoscopic shear plastic strain and C is the cumu-
lated plastic mesostrain given by

_C¼:
ffiffiffiffiffiffiffiffiffiffiffiffiffi
_cp � _cp

q
: ð8Þ



Fig. 3. The three-phase evolution of the plastic yield limit. Comparison between the piecewise linear model (Morel—continuous line) and the power model (dashed line).
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2.3. Power law model

The model used in this work replaces the piecewise-linear
dependence in the evolution of the yield limit with a power law.
When compared with the model of Morel, one immediately notices
the advantages arising from the piecewise-linear description. In-
deed, in this latter case, for periodic macroscopic loadings it is pos-
sible to obtain explicitly the lifetime (see [16]). However, the
hardening rule (7) is a rough approximation of the actual behav-
iour of materials, for which the sharp transitions between harden-
ing and saturation regimes as well as from saturation to softening
regimes are difficult to justify.

An alternative model is given by the following constitutive
power law

GðCÞ¼: DT0

2
� jC� C0ja

b
ð9Þ

with a > 1, which naturally satisfies the constraints of concavity
and monotonicity introduced above (see Fig. 3).

When compared with the piecewise linear model of Morel, one
cannot hope to retrieve exact lifetime estimates for this model.
However, as we shall see below, precise a priori analytical esti-
mates can be derived in this setting under mild regularity assump-
tion on the behaviour of the function G, which are satisfied
by the power law (9). Before delving into the details of such
estimates, we will derive a suitable approximation for the just
introduced constitutive laws in the case of periodic loadings. In
particular we now want to consider a time-average over each cycle
of the loading.
3. Separation of time scales

In the regime of HCF we can distinguish between a quick quasi-
periodic response of the system to the cyclic charge and a slow
evolution of the inner parameter describing the hardening and
damage of the material itself. This separation of time scales is jus-
tified by the great number of cycles usually considered in HCF
experiments (104–107 cycles). It seems therefore sound to look
for a slowly-varying approximation for this internal variable and
for the cumulated plastic mesostrain C, by averaging out the peri-
odic behaviour of the system. This process is also known as ‘‘time-
homogenisation’’ (see [1,10]).

By differentiating the yield function (6) with respect to time we
obtain:

_f ¼ 2ðs� bÞ � _sþ 2ðb� sÞ � _b� 2sy _sy:

Since during plastic deformations the yield function f is constant
(f � 0), by recalling relation (2), we deduce
_T � l _cp � c _cp ¼ gðCÞ _C

where we have set

cp ¼ cpm:

From definition (8) we have

_C ¼ j _cpj

and therefore

_C ¼ j _Tj
gðCÞ þ c þ l

;

which represents the evolution law for the cumulated plastic mes-
ostrain during plastic deformations. Obviously C is constant during
the elastic part of the loading so that we can deduce the following
ordinary differential equation describing the evolution of the cumu-
lated plastic mesostrain

_C ¼
j _Tj

gðCÞþcþl when f ¼ 0;

0 when f < 0:

(
ð10Þ

We recall that the cumulated plastic mesostrain C is a nondecreas-
ing function of time also if the resolved plastic mesostrain cp oscil-
lates. Indeed, C accounts for all the plastic deformations the
material has endured up to the current time.

We now want to simplify the evolution law (10) in the special
case of cyclic loadings. By the above discussion it is easy to see that
under a periodic loading of equivalent amplitude comparable to
DT0, the plastic mesostrain changes only slightly during one
charge/discharge cycle. Therefore, the increase per cycle of the
cumulated plastic mesostrain is small when compared with the
variation of the mesoscopic strain. This justifies us stating that
the evolution of cumulated plastic strain is slow with respect to
the evolution of the mesoscopic strain. As a consequence, we can
assume that C constant during each cycle.

By considering C as constant during one period of the forcing
term, we can decouple the quick dynamic of the elasto-plastic re-
sponse of the material to the external loading and the slow evolu-
tion of the internal damaging mechanism (i.e. the slow drift of C).
We denote by DT the amplitude of the macroscopic resolved shear
stress. In order to integrate (10) on a single cycle, we observe that
during a complete unloading–loading phase from �DT=2 to DT=2,
the mesoscopic inclusion will be in elastic regime (f < 0) up to
T ¼ �DT=2þ 2sy. therefore, we obtain (see Fig. 4 and [17, Appen-
dix A])Z

f¼0

_T ¼ DT
2
� �DT

2
þ 2sy

� �
¼ DT � 2sy:

By taking into account the second half of the loading cycle (i.e. the
transition of T from DT=2 to �DT=2), and using this result in (10) we
finally have



Fig. 4. Illustration of the relation between the periodic resolved plastic shear stress
and the evolution of the cumulated plastic mesostrain. Notice that only the heavily
thickened part of the loading cycle contributes to plastic deformations. The
amplitude of the hatched regions has been emphasise for clarity of expositions.

Fig. 5. The dependence of the mesoscopic hardening law on the ‘‘flatness’’
parameter a. Note that for larger as (dashed line) the plateau is longer.
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DcycleC ¼
Z

cycle

_C ¼ 4
lþ c þ gðCÞ

DT
2
� sy

� �
:

where DcycleC represents the (small) change in C during a single
complete loading cycle.

The behaviour of the simple system we are studying can there-
fore be reduced to a system of an ordinary differential equation
and a difference equation

DcycleC ¼ 4
lþcþgðCÞ

DT
2 � syðCÞ
� �

_sy ¼ gðCÞ _C:

(
If we consider an adimensionalized time period equal to 1 for the
cycle forcing term Dcyclet ¼ 1 (i.e. if we measure time by the number
of cycles of the periodic loading the system has undergone), we can
average the evolution equation for the cumulated plastic meso-
strain getting the following ordinary differential equation system

_C � DcycleC
Dcyclet ¼ 4

lþcþgðCÞ
DT
2 � syðCÞ
� �

_sy ¼ gðCÞ _C:

(

Recalling the integral relation (4) for the shear limit sy, we finally
get the following ordinary differential equation describing the evo-
lution of our medium

_C ¼ 4
lþ c þ gðCÞ

DT
2
� GðCÞ

� �
: ð11Þ

We recall that the proposed power law model for mesoscopic hard-
ening is determined by 5 parameters. As we will discuss later, of
these DT0 can be directly identified by knowing the characteristic
of the loading. Of the remaining parameters, a has a clear physical
significance representing the ‘‘flatness’’ of the hardening law (see
Fig. 5). This parameter with the other remaining three, namely
C0;b and the sum lþ c will be identified through a fitting procedure.

4. Lifetime estimates in HCF

In the discussion of the previous section no explicit reference to
the analytic form of the constitutive relation GðCÞ has been made.
We now want to particularise the above results by choosing as con-
stitutive hardening relation the power model (9) introduced above.

In this case, Eq. (11) exhibits a threshold behaviour controlled by
the value of DT. If DT

2 is smaller than DT0
2 (i.e. if it is smaller than the

maximum value attained by GðCÞ), then the system will undergo
elastic shakedown and be in an infinite endurance regime. If, other-
wise, DT

2 is above this value, then the material will eventually fail
(i.e. GðCÞ ! 0).
Due to the hypothesis of concavity and regularity on GðCÞ, for
values of DT near the threshold value, the system will show a very
long transient regime, which is proceeded and followed by two
phases of faster evolution. The time span of this transient regime
will constitute the fundamental element for our estimate of the
lifetime of the material in HCF regime. Incidentally, we observe
that this kind of estimates will essentially be unaffected by
changes of the expression of GðCÞ far away from its maximal value.

Starting from (9), we immediately deduce

gðCÞ ¼ �a
b
jC� C0ja�1sgnðC� C0Þ

so that our model (11) reduces to

_C ¼ 4
lþc�a

bjC�C0 ja�1sgnðC�C0Þ
DT�DT0

2 þ jC�C0 ja
b

� 	
Cð0Þ ¼ 0:

(
ð12Þ

From the mathematical theory of dynamical systems an explicit
lower (i.e. conservative) estimate can be deduced for the lifetime
of the material (see Appendix A):

et P
copt þ 1

copt

pðlþ cÞ
2a sin p

a
b

1
a

DT � DT0

2

� �1�a
a

� a
4ða� 1Þ

1
copt � 1

� bðlþ cÞ
4ða� 1ÞC

1�a
0 ð13Þ

where copt is given by

copt ¼
p 2

bðDT�DT0Þ

� 	a�1
a þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p a2

bða�1ÞðlþcÞ
2

bðDT�DT0Þ

� 	a�1
a

sin p
a

r
p 2

bðDT�DT0Þ

� 	a�1
a � a2

bða�1ÞðlþcÞ sin p
a

: ð14Þ

In order to get some insight in this expression, we can consider its
limit for great values of a, that is when the plateau of the saturation
phase becomes flat. This corresponds to the setting of Morel’s works
(see [16,17]). Indeed, we obtain

lim
a!1

copt ¼
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 bðDT�DT0Þ

lþc

q
2� DT�DT0

lþc

� 1

and

lim
a!1

et P
copt þ 1

copt

lþ c
DT � DT0

� 1
4

1
copt � 1

� 2ðlþ cÞ
DT � DT0

where the approximations at the end of the previous computations
hold for small DT � DT0. This estimate corresponds to [17, Equation
(A9)].

Unfortunately, no simple and efficient expression could be de-
rived for an analytical upper bound on the lifetime for our model.
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5. Identification of the parameters from fatigue experiments

In the constitutive relation (9) for GðCÞ and in Eq. (11), five dif-
ferent parameters appear: namely lþ c;DT0;C0;a and b. More-
over, since our model is essentially one-dimensional, DT has also
to be evaluated starting from each 3D macroscopic loading state
of interest.

In order to evaluate DT and DT0 we adopt the same approach
used by Morel in [16]. Starting from the Dang Van criterion (see
[5,6]), we assume that the material undergoes elastic shakedown
if

DT þ ASH
max 6 B;

where SH
max is the maximum value reached by the mesoscopic (and

macroscopic) hydrostatic stress during the periodic loading, while
DT is a suitable measure of the resolved shear stress acting along
the most solicited slip direction plane. In particular, we will use
the following definition (see Morel [16] and Papadopoulos [22])

DT ¼max
h;/

Trðh;/Þ

where

Trðh;/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 2p

0
T2

aðh;/;wÞdw

s
:

Here h and / are angular variables used to identify the plane orthog-
onal to the versor

n ¼
sin h cos /
sin h sin /
cos h

0@ 1A;
in the physical space, w is an angle parametrizing all possible
directions m in the slide plane identified by n and Taðh;/;wÞ is
the amplitude of the variation of the mesoscopic resolved shear
stress s defined above.

The material parameters A and B can be related to the fatigue
limits under fully reversed tension compression f�1, and under
fully reversed torsion t�1:

A ¼

ffiffiffiffi
p
p

t�1 � f�1
2

� 	
f�1
3

; B ¼
ffiffiffiffi
p
p

t�1:

In the simple case of sinusoidal loading, that is for loadings in the
form

R ¼
rm

xx þ ra
xx sinðxtÞ sa

xy sinðxt þuÞ 0
sa

xy sinðxt þuÞ 0 0
0 0 0

0B@
1CA ð15Þ

for a suitable reference frame, where rm
xx is the mean normal stress

in the x direction, ra
xx and sa

xy are the amplitude of the normal and
shear stresses, DT and DT0 can be explicitly computed and are given
by the following expressions:

� In phase tension and torsion (u ¼ 0�)
DT0 ¼
t�1f�1 � t�1 � f�1

2

� 	
rm

xx

f�1 þ t�1 � f�1
2

� 	
ra

xxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðra

xx Þ
2

4 þðsa
xyÞ

2

q
DT ¼

t�1f�1 � t�1 � f�1
2

� 	
rm

xx

f�1ððra
xxÞ

2 þ ðsa
xyÞ

2Þ þ 2 t�1 � f�1
2

� 	
ðra

xxÞ
2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðra

xxÞ
2 þ ðsa

xyÞ
2

2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðra

xxÞ
2 þ ðsa

xyÞ
2 þ jðra

xxÞ
2 � 3ðsa

xyÞ
2j

q

� Out of phase tension and torsion (u ¼ 90�)
DT0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrm

xxÞ
2

4
þ ðsa

xyÞ
2

s

DT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðra

xxÞ
2 þ ðsa

xxÞ
2

q
2
ffiffiffi
2
p

ra
xx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðra

xxÞ
2 þ ðsa

xyÞ
2 þ jðra

xxÞ
2 � 3ðsa

xyÞ
2j

q

We now consider the other modelling parameters. We observe
that the kinematic hardening parameter c and the Lamè shear
modulus l may in principle be considered material constants al-
ready known from other experiments. However, in this work, we
will identify them together with the other material constants
appearing in (9) and (11): C0;a and b. We note, moreover, that l
and c always appear together in the above expressions (in particu-
lar, see Eq. (11)) so that only a joint estimate of the sum lþ c can
be obtained with this model. The identification of these four
remaining parameters will be achieved through optimisation of a
suitable cost function (see e.g. [13]). Two choices seem natural in
this context:

� minimising the sum of the squared errors between the experi-
mental lifetimes and the simulated ones;
� minimising the sum of the squared relative errors between the

experimental lifetimes and the simulated ones.

These two approaches have led to very similar results in the
experimental validation of our model of the next sections. Follow-
ing [13], we will therefore report only the results using the first of
the two approaches.

6. Results and discussion

In order to assess the efficiency of the estimate for the predicted
lifetime obtained above, we compared the numerical solution of
system (11) describing the evolution of the cumulated mesoscopic
plastic strain, to the analytical approximation of lifetime given by
estimates (13) and (14). The complete integration of (11) was per-
formed using a high-order Runge–Kutta scheme (in particular a
Runge Kutta (4,5) method was used—see [14, routine ode45 ]).
We emphasise that the estimate (13) is a lower bound for the life-
time and therefore it is a theoretical conservative estimate.

On account of the many different tests done, we report in Fig. 6
the results of some numerical experiments showing a good agree-
ment of approximation (13) for physically meaningful parameters,
when the ‘‘flatness’’ parameter a is large enough. In order to assess
the efficiency of the analytical approximation deduced previously,
we introduce the following efficiency ratio

g ¼ lifetime given by ð13Þ
lifetime obtained by numerical integration of ð12Þ :

We observe that values of g near 1 correspond to efficient estimates
and that if g < 1 the analytical bound is conservative. In particular,
as soon as a is greater than 4 or 5, the approximation is efficient for
all the values of DT � DT0, which arise in experiments and which
can be accounted for with this kind of model (usually
DT � DT0 � 100 	 103MPa for metallic materials). In order to keep
the discussion as simple as possible, only integer values of a were
considered here. However, a can be any real number greater than 1.

In Fig. 6 the behaviour of g with respect to the load DT � DT0 is
shown. The different lines correspond to the representative values
for a;a ¼ 2;3;4 and 6. All other parameters are physically relevant
and have been kept constant to ease comparison. In particular we
have considered C0 ¼ 66;lþ c ¼ 2;800;000 MPa;b ¼ 70;000
MPa�1 DT0 ¼ 445 MPa. The horizontal line at height 1 represents a
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perfect estimate. As expected, the analytical estimate derived above
is confirmed to be conservative.

We have finally checked the effectiveness of our model in fitting
experimental results and in predicting failure. To this end, we use
some of the experimental data which can be found in the literature
(see [8,11,12,18,20]). In each case, we have used the data coming
from simple tension compression tests (called training points in
the sequel) to fit the parameters of the model and to make predic-
tions for the other observations. The results of these experiments
(predicted endurance limit vs. experimental values) can be found
in Fig. 7. Data used to fit the model (training points) are highlighted
in red, while the remaining observation used to check the model
(control points) are in blue. In this plot the diagonal represents per-
fect agreement between the model and the experimental values,
whereas the two dashed limes represent a factor 2 acceptable
tolerance.

As can be seen from Fig. 7, the agreement between estimated
and observed lifetimes is quite satisfactory. Most of the experi-
mental points fall between the two dashed tolerance lines for a
wide range of the experimental parameters and a variety of mate-
rials considered. Scatter of experimental data up to 3–5 times that
of the fatigue curve is indeed typical of HCF, which is due to indi-
vidual properties of the material local zones. That is why scatter of
data presented in Fig. 7 can be considered as regular if individual
properties of the specimen are not taken into account.

7. Conclusions

We have proposed a new model for the lifetime of materials in
the HCF regime. This model is a refinement of the one introduced
by Morel in [17] based on the DVK criterion. In particular, it pro-
vides a more thorough understanding of the basic phenomena
and gives an explanation of the long transient behaviour observed
in material between the initial accommodation and the final break-
down (or crack initialisation).

Our approach allows us to consider a richer mesoscopic harden-
ing rule than already done in the literature. As in [16,17] our model
involves an initial hardening, a long saturation phase and a final
softening leading to failure. The nonlinear power law proposed de-
pends on five different parameters. The a priori analysis and the
numerical tests reveal that the most relevant among the parame-
ters is a, which describes the ‘‘flatness’’ of the hardening law.
Moreover, a is directly related to the lifetime estimate (13). All
the parameters of the mesoscopic model can be estimated using
a simple and efficient least-square optimisation procedure. Never-
theless, study of the relations between more refined microscopic
models and the parameters should be performed in the future.

The additional detail of description introduced has only a minor
impact on the computational cost of the model. Indeed, when
studying crack initiation problems, the main computational tasks
are related to the solution of stresses and strains on the whole
structure of interest. Therefore, any algebraic criterion for failure
detection (in opposition to more complex local relations) is practi-
cally equivalent from the point of view of computational costs.

The lifetime estimates obtained account well for the experi-
ments. The residual unpredicted variability is consistent with the
usual scattering of HCF experimental data.

The main advantage of the proposed method based on dynam-
ical systems techniques is the possibility of extending it to a large
class of local material behaviour involving not only plasticity, but
also crack and damage evolution, while keeping a simple closed-
form formula for the prediction of the lifetime.

Finally we note that the extension of this approach to more
complex periodic and quasi-periodic multiaxial loadings and to a
larger base of materials constitute interesting fields of research,
which are relevant for applications and which remain still largely
unexplored.
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Appendix A. A priori estimates

In this section we will derive the bound (13) and (14) for the
dynamical system (12). In order to simplify the notation and focus
on the main analytical argument, we will consider the following
equivalent Cauchy problem

_y ¼ hðyÞ¼: �þAjyja

1�Bjyja�1sgny

yð0Þ ¼ y0:

(
ðA:1Þ



Fig. A.1. The approximations to the function hðyÞ used in deriving the lower bound
on the failure time for system (A.1).
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with y0 6 0. We observe that all the results of this section can be
readily adapted to our original model (12) by setting:

� ¼ 4
lþ c

DT � DT0

2

A ¼ 4
lþ c

1
b

B ¼ 1
lþ c

a
b

y0 ¼ �C0:

We start by rigourously defining the lifetime for our system.

Definition 1. The lifetime for system (A.1) is the time tn
y0 that is

necessary for any solution to travel from y0 to n where n is the
vertical asymptote of h given by the (unique) real root of

1� Bjnja�1sgnn ¼ 0:
Before stating the main estimate, we recall an elementary re-

sult, which will be very important in the following. (see [26, Exer-
cise 4.3.10]).
Theorem 2. The time required for a solution of the differential
equation

_y ¼ �þ Aya

to go from �1 to þ1 is given by

tþ1�1 ¼
p

a
2 sin p

a
A�

1
a�

1�a
a :

Consider now Eq. (A.1). In order to estimate the lifetime from
below (conservative estimate of the endurance of the material)
we will consider the following approximation from above of h:

hðyÞ 6 ehðyÞ¼: �þ Ajyja if y 6 0
cð�þ AjyjaÞ if 0 6 y 6 x1

þ1 otherwise

8><>:
where x1 is defined by:

cð�þ Ajx1jaÞ ¼ hðx1Þ; x1 2 ð0; nÞ i:e x1 ¼
c� 1

Bc

� � 1
a�1

ðA:2Þ

and c will be determined later. Since solutions of the dynamical sys-
tem associated to eh travel slower than those of (A.1), we immedi-
ately deduce that

tn
y0
¼ t0

y0
þ tx1

0 þ tn
x1

P ~t0
y0
þ ~tx1

0

where with ~tb
a we denote the time required by a solution of the

dynamical system

_y ¼ ehðyÞ
to travel from a to b.

We start by estimating ~t0
y0

, always from below. We consider the
further approximation

_y ¼ eeh AðyÞ¼: Ajyja: ðA:3Þ

Reasoning as above, we deduce

~t 0
y0
¼ ~t 0

�1 � ~ty0
�1 P ~t 0

�1 �
~~tA

y0
�1

By symmetry, Theorem 2 implies (see Fig. A.1).

~t0
�1 ¼

p
a sin p

a
A�

1
a�

1�a
a

whereas a direct integration of Eq. (A.3) gives
~~tA
y0
�1
¼ 1

A
1

a� 1
jy0j

1�a

from which we deduce

~t 0
y0

P
p

a sin p
a

A�
1
a�

1�a
a � 1

A
1

a� 1
jy0j

1�a
:

We now consider the lower approximation of the travelling time ~tn
0

from 0 to n (failure). Arguing as before we deduce:

~tn
0 P ~tþ10 � ~~tcAþ1x1

¼ p
ac sin p

a
A�

1
a�

1�a
a � 1

cA
1

a� 1
x1�a

1

Using the definition of x1 given above (see (A.2)) we finally get

~tn
0 P

p
ac sin p

a
A�

1
a�

1�a
a � B

Aða� 1Þ
1

c� 1

which is minimised when

c ¼ copt¼
: p A

�

� �a�1
a þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pB a

a�1
A
�

� �a�1
a sin p

a

q
p A

�

� �a�1
a � a

a�1 B sin p
a

for � small enough.
Putting all the above results together we finally obtain the fol-

lowing estimate from below to the lifetime of our model:

tn
y0

P
copt þ 1

copt

p
a sin p

a
A�

1
a�

1�a
a � B

Aða� 1Þ
1

copt � 1
� 1

A
1

a� 1
jy0j

1�a
:

After substitution of the values for A;B; � and y0 arising in our mod-
el, we finally deduce the desired estimate on the lifetime.
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