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Abstract

This paper is dedicated to the comparison of several numerical models for estimating the lifetime in a fatigue experiment. The models simulate

the SPLASH experiment, which produces thermal fatigue by locally quenching stainless steel specimens. All models predict first a stabilized

mechanical state (plastic shakedown) and then a lifetime prediction using several fatigue crack initiation criteria.

The numerical methods are either completely nonlinear or combine approximate elastic solutions obtained from minimizing a potential energy

or closed form solutions with a Neuber or Zarka technique to estimate directly the elastoplastic state.

The fatigue criteria used are Manson, dissipated energy and dissipated energy combined with a hydrostatic pressure term. The latter had

provided a best prediction over a series of anisothermal and isothermal LCF experiments in a classical fatigue analysis.

The analysis shows that for fatigue criteria taking into account the triaxiality of the mechanical response we obtain a systematic and

conservative error. As a consequence of this work, we show that simplified models can be used for lifetime prediction. Moreover the paper

provides a general technique to asses from the point of view of the design engineer the combination between a numerical method and a fatigue

criterion.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The lifetime of a large class of industrial parts is estimated

by numerical computations during their design cycles in order

to assess their response under normal and exceptional loading.

The existing design methods can be composed from closed-

form, finite element solutions, boundary element solutions,.
and fatigue criteria. The choice is rather large after decades of

developments in solid mechanics as well as in fatigue

experiments and criteria. It is important to notice that the

choice of the design method is not only based on the global

accuracy of the technique, but also by engineering environ-

ment: time constraints, available numerical, lifetime assess-

ment codes.
The aim of this paper is to provide a comparison of a series

of numerical techniques ranging from full nonlinear
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elastoplastic finite element solutions lasting one day on

existing computers, to closed-form or approximate solution

obtained almost instantaneously. The comparison will asses the

precision of the lifetime predictions through different methods

and prove that simple models can still be used provided the

error is systematic, conservative and a priori known.

At the basis of the comparison we shall consider the

SPLASH experiment [13], in which a specimen heated by Joule

effect is cyclically cooled down by a water spray on its surface.

The cooling, similar to quenching, creates large temperature

gradients over time and space, and a confined plastic zone.

After cycling, an evolving crack network can be observed

under certain loading conditions and observations have been

reported in [26,27].

Initially results have been interpreted according to the

classical industrial lifing codes ASME, R5, RCC-M, by a

simple closed-form solution combined with a Manson type

criterion, with an equivalent plastic strain amplitude as the

damage parameter. However it leads to unsatisfactory lifetime

predictions. Recently complete 3D finite element computations

[4] provided the complete mechanical fields during the cycle.

They showed an important evolution of the stress triaxiality
International Journal of Fatigue 28 (2006) 692–706
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during the experiment. Therefore a fatigue criteria combining

the hydrostatic stress and the dissipated energy per cycle has

successfully been proposed.

Fatigue analysis for structures with thermal quenching

have already been reported in the literature. Srivastava et al.

[41] analyzes the lifetime of a die-casting tool using a Manson-

Coffin fatigue criteria. A similar study is provided by

Mackin et al. for the fatigue of automotive brakes in [25].

Kerezsi et al. [21,22] reviewed a series of quenching

experiments and analyzed the results, i.e. the evolution of the

crack network in terms of stress intensity factors of the

involved cracks.

However, to our knowledge, no complete comparison of

different lifing methods involving elastoplastic finite elements,

closed-form solutions, estimation of plastic strains and

different fatigue criteria has been reported for such problems.

The aim of the paper is to propose such a comparison for a

thermal shock fatigue experiment.

The analysis of the SPLASH experiment proposed in the

sequel, more precisely the construction of the numerical

techniques, is based on a series of assumptions: uncoupling of

the heating and the mechanical power and uncoupling of the

constitutive law from damage evolution. Moreover, we shall

suppose that the cyclic loading leads to a plastic shakedown

state on the structure. As a consequence the lifetime prediction,

understood as a crack initiation prediction, is done in three

steps:

† computation of the evolution of the temperature field;

† computation of the stabilized cycle, corresponding to the

plastic shakedown state (with the preceding temperature

field as the loading parameter);

† lifetime prediction through a fatigue crack initiation

criteria, based on the characteristics of the stabilized cycle.

For the computation of the stabilized cycle, we shall

compare the mechanical states obtained with five different

methods. The first two involve elastoplastic models:

† M0: a finite element solution with an elastoplastic

constitutive law with non-linear kinematic hardening.

† M1: a finite element solution with an elastoplastic

constitutive law with linear kinematic hardening.

The next three methods, combine an elastic computation

with an estimation of the plastic strain obtained through

different techniques:

† M2: a finite element solution with elastic constitutive law

and Zarka’s technique [43] for the computation of the

bounds of the stabilized cycle

† M3: an elastic closed-form solution for a half-space

submitted to a cylindrical temperature gap at its center

and a plastic strain estimated from a Neuber [24] type

formula (Kn technique [32])

† M4: an approximate solution obtained by minimizing the

complementary potential energy on a polynomial basis and
plastic strain estimated from a Neuber [24] type formula

(Kn technique [32]).

For the lifetime prediction, three criteria have been

employed: Manson–Coffin, dissipated energy per cycle and

dissipated energy corrected with a hydrostatic pressure term.

The comparison is done for the stress and strain values of the

stabilized cycle and for the complete lifetime prediction.

The paper is organized as follows: Section 2 describes the

material and the test rig of SPLASH experiment, the third

section presents general assumptions of the analysis and the

fourth section is then dedicated to the description of the

different methods. The comparison of the stabilized mechan-

ical states and the lifetime predictions are done in the last two

sections.

2. Material and experimental procedure

The material studied here is a 304 stainless steel with a

classical chemical composition given in Table 1 and thermo-

mechanical properties in the studied temperature range (20–

300 8C) given in Table 2.

The SPLASH test is a thermo-mechanical fatigue exper-

iment designed by the CEA (similar to the test rig proposed by

Marsh [29]), for the understanding of the apparition of crack

networks under periodic thermal shocks. Another aim is to

reproduce crack networks similar to those observed on real

structures [14, 15]. Experimental observations and analysis of

these crack networks have already been studied and some

important results are reported in [27].

The test facility is composed of a specimen (240!30!
20 mm3) continuously heated by an electrical DC current and

periodically cooled by water sprayed on two opposites faces of

the specimen as displayed in Fig. 1.

The cycles start with a homogeneous temperature Tmax in

the hole specimen, followed by a local short cooling period

(0.25 s) to Tmin and the heating up period (7.5 s) to Tmax. The

temperature difference DTZTmaxKTmin, measured at the

center of the quenched zone is considered as the loading

parameter of the experiment.

Thermal down-shocks produced by water-spraying induce

large temporal and spatial gradients: the cooling-rate is about

600 8C/s and the gradient along depth of specimen is

approximatively 100 8C/mm. The thermal loading zone is

confined to some square millimeters on the surface and of a few

millimeters in depth, therefore, the experiment conducts to a

small localized plastic zone which develops into a crack

network with growing number of cycles.

3. Modeling assumptions

The modeling assumptions of the SPLASH experiment can

be splitted in two classes: the uncoupling assumptions between

heating, mechanical behavior and damage evolution; and the

assumptions on the cyclic material behavior which will permit

to compute directly the stabilized cycle corresponding to the

plastic shakedown state of the structure.
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Table 2

Material properties, 304L stainless steel

E

(GPa)

a (KK1) Rp0,2

(Mpa)

n r (Kg/m3) k (W/m/K) CP (J/

Kg/K)

20 8C 196 15.9!

10K6

175 0.3 7800 18 550

350 8C 172 17.8!

10K6

105 0.3 – – –
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3.1. Uncoupling assumptions

The first assumption is the uncoupling of the thermal

analysis from the mechanical analysis. We have considered

that the thermal analysis is independent and the heat source and

the flux boundary conditions have been identified in order to

match the temperature measurements. Therefore, the heat

source provided by the mechanical power s : _3 is included

directly in the identified terms.

The second assumption states the uncoupling of the

constitutive law and the damage evolution, i.e. the uncoupling

of the mechanical analysis from the fatigue analysis.

This uncoupling assumption on damage has already

successfully been used in lifetime predictions. In the high-

cycle fatigue domain, it is justified by the elastic shakedown of

the structures [9] and is the base concept to criteria like Dang-

Van [10], Papadopoulos [35] or Morel [30].

In the low-cycle thermal fatigue domain, this hypothesis has

been successfully used on 3D automotive structures [7,6,42,8]

and therefore justified by the a posteriori results.

Moreover, biaxial experiments on cruciform specimens

reported in [38] showed that lifetime predictions obtained with

damage uncoupled from mechanical behavior were as precise

as predictions obtained with coupled models.
Water spray

Highly loaded zone

Fig. 1. SPLASH specimen.
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3.2. The cyclic behavior and the stabilized cycle

The cyclic behavior of the 304 stainless steel [31] shows a

complex evolution which can be described using a series of

superposed hardening laws as proposed for example in [24,

23]. However, taking into account that the structure under

consideration is submitted to z104–106 cycles, and that the

elastoplastic computation of a load increment takes z3 min

this would conduct to heavy numerical computations.

In order to simplify the analysis, we shall also suppose

that the material behavior is stabilized during the complete

lifetime of the structure, i.e. that a plastic shakedown state is

reached and that it characterizes the lifetime. As a

consequence the different hardening and softening periods

are therefore neglected in the present approach (see Fig. 2).

This leads in an approximate error of about 5% in the

computed stress level, which is of the order of magnitude of

other uncertainties in the model. We would also like to

recall that this hypothesis is coherent with the interpretations

given by Skelton [8,39] of the cyclic behavior of the

material and its fatigue damage under anisothermal

conditions. The steps defined in these papers are delimited

by the stabilization, the tangent and the final points (Fig. 2).

Therefore, a reasonable choice is to admit that the

mechanical response at Nf/2 lies within the stabilized period

and will correspond to the material behavior identified for

computational needs. It is important to remark that our

choice is compatible with the fatigue analysis where

characteristics used in the interpretation are equally taken

after Nf/2 cycles.

The experiments used for material parameter identification

were uniaxial strain controlled tension experiments on

cylindrical specimens reported in [31]. The variations of the

stress level obtained with parameters identified from different

loading conditions (which will also imply different Nf/2)

were in the expected error of about 5%.
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Fig. 2. Evolution of the global load in isothermal
4. Numerical methods for the computation of the

stabilized cycle

We describe in this section five numerical methods with

various complexity in order to compute the stabilized

mechanical response of the SPLASH specimen.

The thermal analysis of the SPLASH test has been modeled

by finite element. Numerical results matched experimental

measurements from thermocouples placed in the quenched zone

at surface and in depth of specimen as displayed in Fig. 3. A

complete analysis of the thermal computations is provided in [3].

As one of the motivations of this work is the comparison of

computational burden of numerical methods, we mention that

all computations presented in the sequel have been performed

on a 3GHz bi-processor with 4Go RAM running under Linux.

Finite element models have been realized using the object-

oriented finite element program Cast3M [1]. The same mesh

has been used with 17,000 nodes and combined linear cubical

and prismatic elements for all FEM computations. The finest

zone of the mesh corresponds to the quenched zone of the

specimen and the elements in this part of the mesh are 100 mm

long. The spatial gradients are well represented over at least a

dozen of element. In order to estimate the possible error due to

large spatial gradients finer meshes have been tested and we

can report that refining mesh above the present limit causes an

important increase of computing time without a noticeable

improvement of the results.
4.1. M0: finite element model with a non-linear kinematic

hardening

The reference analysis will consider that the material obeys

to an elastoplastic constitutive law. To respect to the modeling

assumptions described in the previous section, we shall choose

a constitutive law without isotropic hardening. This is coherent
L
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d
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Skelton’s interpretation
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uniaxial experiments under fixed strain range.
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Table 3

Materials parameters identified for the non-linear kinematic hardening rule

at 320 8C

E (Gpa) n sY (Mpa) A (MPa) C

174 0.3 102 114 532
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Uniaxial isothermal experiment
Non-linear model

Fig. 4. Comparison of an isothermal (320 8C) uniaxial LCF test with computed

results using the identified constitutive law with non-linear kinematic

hardening.
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with the assumption of a stabilized cyclic behavior during all

lifetime of the specimen. Moreover, we can report that in the

temperature range of the SPLASH test 150–350 8C, we can

neglect viscous effects.

The chosen elastoplastic constitutive law is the Armstrong–

Fredericks’ law [5] which is based on a classical additive

decomposition of the strain into an elastic and a plastic part:

3tZ3eC3p, a von Mises yield criterion and a non-linear

kinematic hardening rule expressed as

sZA : 3e ZA : 3tK3p
� �

(1)

_3p Z l
vf

vs
(2)

f Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3J2ðsKXÞ

p
KsY (3)

_XZ c
2

3
a _3pKX _p

� �
(4)

where a and c are material parameters and p denotes the

cumulated plastic strain defined as:

p Z

ðt

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
_3p : _3p

r
dt (5)

The four material parameters, Young’s modulus E, elastic

limit sY and two hardening coefficients a and c, are identified

on isothermal uniaxial strain-controlled experiments on

cylindrical specimens reported in [31]. The parameters have

been obtained by minimization of a least squares distance

between computed and measured stresses. The procedure is

based on a Levenberg–Marquart minimization algorithm (from

Mathematica [2]) and a gradient computed using finite

differences based on direct computations with Cast3M [1].

Without discussing further details of the identification

procedure here, let us just observe the match between the

computed and experimental material response as displayed in

Fig. 4. The identified parameters (Table 3) were in good
agreement with the orders of magnitudes reported in the

literature [24].

Let us mention that the identified parameters correspond to

320 8C and are in negligible distance with those at 165 8C. The

relative errors for E, a, c, sY are less than % between the two

temperatures. As SPLASH test temperature range lies within

this interval we shall further consider that the material

parameters are temperature independents.

The computations done in the case of the SPLASH

experiment correspond to three different temperature drops at

the center of the quenched zone. For each case up to 30 cycles

have been computed in order to assure that the stabilized cycles



Table 4

Materials parameters identified for the linear kinematic hardening rule at

320 8C

E (Gpa) n sY (Mpa) H (GPa)

174 0.3 167 11
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has correctly been computed. One can report that the

mechanical behavior of the structure is stabilized after 5

cycles. A load increment for this computations takes about

190 s which leads to 20 h to compute the 5 cycles needed for

the mechanical stabilization (shakedown state).
4.2. M1: finite element model with a linear kinematic

hardening

In order to decrease the computational burden of the

reference model described in the previous subsection, we

perform a finite element analysis with a simpler constitutive

law then presented before in Eqs (1)–(3), with a linear

kinematic hardening:

XZH3p (6)

where H is the linear kinematic hardening parameter.

We still use the isothermal uniaxial strain-controlled

experiments reported in [31] to identify the model. In these

experiments, the observed behavior of the 304 stainless steel is

non-linear and can, therefore, hardly be represented by a linear

hardening rule, however experiments are matched by the

computation in the strain range of 0.2–0.4% which is the

domain of interest for the SPLASH experiment (see Fig. 5).

The identification of linear hardening is done by trial and error

and material parameters identified are given in Table 4.

As for the reference model, the mechanical response of the

specimen is stabilized after 5 cycles. The main advantage of

linear kinematic hardening comes from the smaller compu-

tational burden, as the computation of a load increment takes

‘only’ 120 s. This leads to 13 h for the computation of 5 cycles.
4.3. M2: finite element model based on Zarka’s method

We shall use an elastic FEM solution and the Zarka’s

method [43] to estimate bounds of stress and plastic strain

ranges on the stabilized cycle. This technique is essentially

based on shakedown theory [28,16] for standard generalized
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Fig. 5. Comparison of an isothermal (320 8C) uniaxial LCF test with computed

results using the identified constitutive law with linear kinematic hardening.
materials formalism [17] and is shortly presented in the

Appendix A.

Two important hypothesis should be verified to apply

successfully the Zarka method for the SPLASH experiment: (i)

an elastoplastic material behavior with linear kinematic

hardening and (ii) a radial loading path.

The first hypothesis (i) has already been discussed in the

previous subsection and we shall consider here the behavior

already defined and displayed in Table 4. With respect to the

radial loading path, we displayed in Fig. 6 the stress path at the

center of the quenched zone in the syyKszz space. This shows

that we can reasonably consider that it is radial as we recall that

sxxZ0 at this point.
4.4. M3: closed-form solution of semi-infinite wall coupled

with the Kv’s method

We consider an elastic half-space (see Fig. 7). The

temperature field is homogeneous with the exception of a

cold inclusion, with temperature difference DT, in the form of a

semi-infinite cylinder, with radius R defined as the set:

fðx; y; zÞjx%0; y2Cz2!Rg

The deformation of the material is characterized by the

strain tensor:

3ZaDTI (7)

where a is the dilatation coefficient and I the identity matrix.

As at the free surface s,njzZ0Z0, assuming that sxxZ0 it

follows that the elastic solution is:
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Fig. 6. Evolution from szz with syy.
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3Z

K2n

1Kn
aDT 0 0

0 aDT 0

0 0 aDT

0
BBBBB@

1
CCCCCA

sZ

0 0 0

0
EaDT

1Kn
0

0 0
EaDT

1Kn

0
BBBBBBBB@

1
CCCCCCCCA

(8)

In order to avoid any confusion, we recall that equivalent

stresses and strains are defined as

seq Z

ffiffiffiffiffiffiffiffiffiffiffiffi
3

2
s : s

r
3eq Z

ffiffiffiffiffiffiffiffiffiffiffiffi
2

3
e : e

r
(9)

where s and e are deviatoric part of stress and, respectively,

strain tensors:

dev tZ tK
1

3
TrðtÞ,I

The equivalent stresses and strain for this solution are then

obtained as:

seq Z
EaDT

1Kn
3eq Z

2

3

1Cn

1Kn

� �
aDT (10)

This closed-form solution, denoted as the ‘semi-infinite

wall’, provides a rough but instantaneous evaluation of the

stress level and of the elastic strain range in the center of the

quenched zone from the SPLASH specimen. In order to

compute the plastic strains from the elastic solution, we shall

use an extension of Neuber’s rule [24] known as the Kn method

[32]. The total strain range is calculated from the elastic strain

range by multiplying it by a coefficient denoted Kn. This

coefficient depends on the elastic strain range and on a
modified biaxiality ratio. The plastic strain range is obtained by

using a classical additive decomposition of total strain:

D3p ZD3tKD3e ZD3e KnK1
� �

(11)
4.5. M4: elastic solution by minimizing the complementary

energy coupled with the Kn’s method

The elastic approximate solution used in this section stems

from a direct minimization of the elastic complementary

energy potential over a particular set of statically admissible

fields. The method provides two advantages: (i) one can use a

temperature field closer to reality than in the previous section,

(ii) the statically admissible stress fields can depend on a small

number of parameters providing an instantaneous solution.

The plastic strains in the SPLASH experiment are localized

in a tiny elliptical zone around the quenched part of specimen

(some square-millimeters at the surface and a few millimeters

in depth). The rest of specimen remains at the same thermo

mechanical state during a cycle. Therefore we will only

consider the solution in a cylinder of radius h and hight p, using

axisymetrical coordinates (see Fig. 8).

We admit that the temperature distribution at maximum

cooling point is expressed as a second order polynomial in r

and z.

Tðr; zÞZ T0KDT CFzK
F2

4DT
z2 C

DT

h2
r2K

F

h2
zr2

C
F2

4DTh2
r2z2 (12)

where T0 is the initial temperature of the body and DT and F

are, respectively, the temperature difference and the maximal

flux at the surface of specimen.

The height p of the choose cylinder is estimated from

boundary conditions and is related to DT and F by:

p Z
2DT

F
(13)

The temperature field in the cylinder is then completely

described with only four parameters which are h, DT, F and T0

and can be obtained from measurements or numerical

estimations using for example a least squares fit. It is therefore

not an exact solution of the heat equation but satisfies however

the boundary conditions.

We recall that, the elastic stress field solution of the problem

minimizes the elastic complementary energy potential [37]

UðsÞZ
1

2

ð
U

ððsKsthÞ : L

: ðsKsthÞÞdVK

ð
vUd

ud,ððsKsthÞ,nÞdS (14)

over statically admissible stress fields s, i.e. satisfying the

balance equation and the boundary conditions.

The first term in Eq. (14) denotes the strain energy with L

the fourth order tensor of elastic compliances and the second



Fig. 8. Quarter of real structure (left panel) and axisymetrical model (right panel). The Ox axis (left panel) and the Oz axis (right panel) are oriented torwards the

depth of the sample.
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term is the boundary mechanical work of the traction vector on

the imposed displacement fields.

The proposed admissible stress field has the following form:

srrðr; zÞZACBzCCz2 CDr2 CEzr2 CFr2z2 (15)

sqq Z r
vsrr

vr
Csrr (16)

szz Z srq Z szq Z 0 (17)

where A, B, C, D, E, F are the parameters determined by

minimization of the complementary energy potential. The form

of the sqq component is imposed by the balance equation

div sZ 0

The minimization of the elastic complementary energy

provides the stress field in the cylinder. Elastic strains are then

obtained with the Hooke’s law and plastic strains are estimated

using the Kn method as in Section 4.4.

5. Comparison of the plastic shakedown state

In this section we shall provide a comparison of the

mechanical fields during the shakedown cycle. For the methods

M0, M1, M2 we shall compare the complete solution whether

for M3, M4 we shall only discuss the elastic estimations.

Finally all methods will be compared by their predictions of

stress and plastic strain ranges in the center of the quenched

zone.

5.1. Results from FEM computations (M0, M1, M2)

Let us first remark the multiaxiality of the mechanical

response as displayed on the left panel of Fig. 9. We remark a

negligible value of sxx compared to syy or szz, opposite to the

observations for strain where one can remark a huge value of

3xx compared to 3yy or 3zz.

On the right panel of Fig. 9 we plot the stress-strain curves

obtained on the stabilized cycle at the center of the quenched
zone with the linear and non-linear hardening laws. A series of

characteristics of the stabilized cycle such as stress–strain

amplitude, cumulative plastic strain per cycle, dissipated

energy per cycle, have similar values with both models.

From the complete elastoplastic solution obtained by

applying Zarka’s method (M2) we present in the right panel

of Fig. 10 the equivalent plastic strain range field. As expected,

one can remark a good agreement with the shape of the same

field displayed in the left panel and obtained with the reference

model M0.
5.2. Discussion on elastic estimations (M3, M4)

On Fig. 11 we compare evolutions of elastic equivalent

stresses estimated with M3 and M4 with the solution obtained

by an elastic finite element model. We remark that the closed-

form solution of the semi-infinite wall predicts a constant stress

in all directions of the specimen whether the elastic finite

element solution shows a decay of stress with depth or growing

distance from the quenched zone, which is equally the solution

provided by the M0, M1 methods.

The elastic energy minimization provides an excellent

match for the evolution within depth of specimen. The

evolution for growing distance of the quenched zone (right

panel of Fig. 11) is less precise. This is probably a consequence

of the assumption that the state is axial symmetric and could be

corrected in a future version by adding further parameters for

the admissible fields.
5.3. Values at center of the quenched zone

In Table 5 we compare equivalent stress and plastic strain at

the center of the quenched zone obtained with the five different

methods.

First, concerning the complete elastoplastic finite element

computations M0 and M1, we remark that for small values of

strain the difference of stress results obtained by the two models

is important (close to 33%). This can be explained on the



Fig. 10. Plastic strain range fields obtained with M0 (left panel) and M1 (right panel).
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uniaxial curves of these models (see Fig. 4 and 5) by estimating

the gap between linear and non-linear curves. However the

difference closes to 3% for larger values of strains.

Second, concerning finite element models, it is important to

notice that equivalent stress and plastic strain ranges computed
with M1 (linear kinematic hardening) enter exactly into the

bounds predicted with M2 which proves the accuracy of

Zarka’s method for prediction for this type of loading.

From elastic estimations associated with the Kn method (M3

and M4), it is important to recall that stresses estimated are



Table 5

Results on stress range and plastic strain range from the five numerical methods

at center of the quenched zone

DTZ125 8C DTZ150 8C DTZ200 8C

M0: FEM

non-linear

Ds (MPa) 245 270 321

D3p 0.07% 0.11% 0.21%

M1: FEM

linear

Ds (MPa) 335 341 356

D3p 0.01% 0.07% 0.20%

M2: FEM

Zarka

Ds (MPa) 331–338 339–349 365–380

D3p 0.02% - 0.

05%

0.05% - 0.

10%

0.19% - 0.

29%

M3: Semi-

infinite wall

CKn

Ds (MPa) 550 660 880

D3p 0.07% 0.11% 0.17%

M4: Elastic

minimiz-

ation CKn

Ds (MPa) 371 345 594

D3p 0.02% 0.04% 0.08%
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elastic stresses. This conducts to an overestimation of stress

range when compared to elastoplastic finite element compu-

tations. But if we compare it with an elastic finite element

model (see Fig. 11), we remark that the elastic energy

minimization (M4) provides an excellent estimation of elastic

stress while the closed-form solution (M3) gives a largely

overestimate elastic stress at the surface of specimen.

However, plastic strain ranges estimated from M3 are closed

from the reference model M0 while those obtained from M4

are underestimated. This shows the roughness of the Kn method

and as a consequence, results obtained with such a method

should be interpreted carefully.
6. Comparison of lifetime predictions

In the previous sections we have discussed a series of

models to compute the stabilized mechanical cycle of the

SPLASH experiment. In this section we shall use the results

described previously in order to estimate the fatigue lifetime

using different criteria.

The fatigue crack initiation criterion is classically defined as

a local relation, i.e. in each spatial point of the structure

(x2U)) between the values of the mechanical fields 3; 3p;s;.
computed for the stabilized cycle and the number of cycles to

failure Nf of the structure:

max
x2U

f 3; 3p;s; :::
� �� �

Nb
f Z c (18)

where b and c are material parameters.

The analysis presented next is based on three main

assumptions. First, we suppose that the complete finite

element solution with nonlinear hardening law provides the

‘best’ values for the mechanical fields and will be further

considered as the reference. We have been obliged to proceed

in this way, because no direct experimental measurement of
the mechanical fields in the quenched zone was possible for

SPLASH. Second, we identify the parameters b and c for

each studied fatigue criterion using the preceeding elasto-

plastic reference computation M0. Finally, the number of

cycles to failure Nf has been defined as the initiation of a

surface crack of length 100 mm. This value should be

understood as an order of magnitude and corresponds to the

mean value of the observed crack length 50–150 mm reported

in [26,27].

It is important to remark that if both the elastoplastic model

M0 and the fatigue criteria are precise we would have:

bM0 Z btest cM0 Z ctest

where the subscripts M0 and test define if the parameters b and

c have been identified using the computed results from M0 or,

respectively, the uniaxial experiments. The error between M0

and test will be estimated in the end of the paper for the best

fatigue criterion.

Starting from this reference data, we shall estimate the error

in lifetime estimations for each chosen fatigue criteria when

using the different methods to estimate the mechanical

solution. The discussed criteria are a classical Manson’s, a

dissipated energy per cycle and a modified energy with a

maximal hydrostatic pressure damage parameter for the

function f.

We recall that the Manson’s fatigue criterion is an uniaxial

law based on plastic strain range defined as

D3pNb
f Z c (19)

were the amplitude of the plastic strain D3p is directly

measured from experiments. As the SPLASH experiment is

multiaxial, we have to extend the amplitude to this case. The

presented extension measures the diameter of the plastic strain

path and is defined by

D3p Zmax
t1

max
t2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
ð3pðt1ÞK3pðt2ÞÞ : ð3

pðt1ÞK3pðt2ÞÞ

r
(20)

where t1, t2 represent different time instants of the stabilized

cycle.

The corresponding values for the different models have been

displayed in Table 5.

The comparison between the observed and the predicted

number of cycles to failure for the Manson criterion is given in

Fig. 12. We remark that all points lie between in the zone of

half and twice the lifetime. An exception are the points

obtained for the smallest DT, computed with the linear

kinematic hardening using the complete FEM solution or

Zarka’s method, were the prediction is not conservative. In the

case of linear hardening, the identification was done such that

the simulated and computed strain-stress curves overlap for

strains of approximately 0.2–0.4%. The difference at small

strains will conduct to differences in the computed cycles at

small DT as commented in a previous section. We can therefore

conclude that errors in plastic strain are not amplified by the

Manson criterion. Moreover, if using this criterion we can use
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Fig. 12. Comparison of experimental vs. predicted lifetime for various

numerical methods using Manson’s fatigue parameter.
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the simplified Neuber calculation for plastic strains, as errors

are compensated.

The criterion based on the dissipated energy per cycle as a

damage parameter is defined as

WpNb
f Z c (21)

where the dissipated energy per cycle is integrated in each

point of the structure over the complete cycle and is

approximated as the product of the amplitude of equivalent

stress and plastic strain rate for simplified methods:

Wp Z

ð
cycle

s : 3pdtzDs,D3p (22)

The results using the dissipated energy as a damage

parameter are very scattered (see Fig. 13). Let us first observe,

that the stress computed of the simplified wall solution is

largely overestimated, as already commented and this conducts

to the observed underestimation of the lifetime in this case. As

for the Manson criterion we obtain an overestimation of the

lifetime in the case of the complete FEM solution with linear

kinematic hardening and a small DT, which is again due to the

underestimation of the plastic strains in this case. If other
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Fig. 13. Comparison of experimental vs. predicted lifetime for various

numerical methods using the dissipated energy per cycle as a fatigue criterion.
computed points lie more or less in the zone of half and twice

the lifetime, it is important to understand that sometimes this is

only due to a balancing of errors. For example the simplified

elastic model combined with a Neuber rule provides a

overestimated stress and a underestimated plastic strain

which produce a ‘correct’ result.

We can also observe that the errors are not systematic, with

the exception of the two simplified models combined with the

Neuber rule.

The modified dissipated energy with a maximal hydrostatic

pressure is defined as:

Wp CaPmax

� �
Nb

f Z c (23)

with a an additional material parameter and Pmax the maximal

hydrostatic pressure attended during the stabilized cycle.

Again, WpCaPmax is computed for each point of the structure.

As shown in Fig. 14, this criterion provides the best results

when we compare the SPLASH test with other multiaxial

experiments from the literature [20,11,40]. The fact that all

points lie within half and twice lifetime of the best fit line

shows the important influence of the hydrostatic pressure as

well the pertinence of the modified energy criterion.

If we compare the numerical methods of this paper using the

modified energy as a fatigue criterion we obtain the results

displayed in Fig. 15. If the results are globally still scattered we

can remark that the error is systematic. However, we remark on

one hand that the lifetime is always underestimated meaning

that the estimation is always conservative; and on the other

hand that each method has a deviation which is similar for all

computed loads.

The relative error between bM0 and btest is % and for cM0

and ctest of %. The plot in Fig. 14 has been obtained using btest

and ctest, and in Fig. 15 using bM0 and cM0. Changing between

the M0 and test values would only shift the ‘diagonal’, i.e. the

continous line, with a small negligeable distance which can be
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Fig. 14. Comparison of experimental vs. predicted lifetime for various

experiments and the complete elastoplastic analysis for SPLASH using the

modified energy fatigue parameter. The experiments are: uniaxial isothermal

tests from CEA [31], different multiaxial and uniaxial experimentations from

literature [20,11].
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easily estimated by least square fit through the star-shaped

points in Fig. 14.

The final conclusion from a fatigue point of view, drawn

from Fig. 14 and 15, is that within the tested methods and

criteria, the only accurate combination is the complete

nonlinear finite element computations M0 combined with a

modified dissipated energy with a maximal hydrostatic

pressure as a damage parameter.
7. Conclusion

This paper presented different methods to perform a

mechanical analysis of the SPLASH thermal shock test rig.

From closed-form solution coupled with simple Neuber’s rule

to complete FEM elastoplastic with non-linear kinematic

hardening, we tested five models and analyzed the obtained

mechanical results on a stabilized cycle. Afterwords, we

performed a fatigue lifetime estimation with three different

damage parameters as fatigue criteria for each method.

From the mechanical point of view, as expected we showed

that only complete FEM computations permitted the knowl-

edge of all mechanical fields on the stabilized cycle. Closed-

form solutions and simplified models provided only the ranges

of the mechanical fields.

From the fatigue point of view, we showed that the most

precise estimation was obtained by the complete nonlinear

finite element computations combined with a modified

dissipated energy with a maximal hydrostatic pressure as a

damage parameter.

However, simplified methods can still be used in combi-

nation with the modified dissipated energy criteria, if one takes

into account the systematic error. It is now clear that the final

choice of the designer is a balance between the demanded

accuracy and the computational burden one is disposed to

spend on the design cycle.

It is also important to underline, that the simplified methods

presented here, can still be improved without increasing their

complexity. For example one can take into account the exact

biaxial state of stresses in the center of the quenched zone when

computing the elastic solution, or use Zarka’s method instead
of Neuber’s rule to provide better estimation of the mechanical

cycle.
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Appendix A. A description of Zarka’s method

This Appendix is dedicated to Zarka’s method [43,19] to

estimate plastic strain and the stabilized cyclic. It is based on

Halphen’s shakedown theory [28,16,33,34] and Halphen and

Son’s Standard Generalized Materials formalism [17]. The

presentation done next correspond to the programming of

Zarka’s method we have implemented in the Cast3M finite

element program with help of an iterative procedure suggested

in [18,19].

Let us consider a structure submitted to a quasi-static

loading, occupying in the reference configuration the domain U

with boundary vU. The loading, depending on time, is

characterized by body forces f, surface tractions td on vtU

and imposed displacements ud on vuU, where vtU and duU are

two complementary parts of the boundary (U, i.e. vtUhvuUZ
: and vtUgvuUZvU. The problems considered here are

subject to the hypothesis of small strains, therefore:

3½u�Z
1

2
VCVT
� �

u (A.1)
A.1. Elastic and elastoplastic problem settings

In order to describe the behavior of the structure, we shall

introduce the sets of statically admissible stress fields and

respectively kinematically admissible strain fields as:

Sðf; tdÞZ fsjdiv sC f Z 0 in U and

s,nZ tdon vtUg

(A.2)

CðudÞZ fujuZ udon vuUg (A.3)

The elastic problem can be, therefore, summarized as

follows:

sel2Sðf; tdÞ; uel2CðudÞ; 3el ZL : sel C30;

3el Z 3½uel�

(A.4)

In order to describe the elastoplastic behavior of the

structure, we assume an additive decomposition of strains

into an elastic, a plastic part and eventually an initial strain:

3Z 3e C3p C30 (A.5)

The set of plastically admissible stress fields is described as:

§ðX;sY ÞZ fsjf ðs;X;sY Þ%0g (A.6)

where f is a von Mises yield criterion
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f ðs;X;sY ÞZ
3

2
ðdev sKXÞ : ðdev sKXÞKs

2
Y (A.7)

with sY the yield limit in tension. The evolution of the plastic

strain is determined from the normal plastic flow rule:

_3p Z l
vf

vs
(A.8)

where l denotes the plastic multiplicator.

The elastoplastic problem is then summarized as follows:

s2Sðf; tdÞ; u2CðudÞ; s2§ðX;sY Þ;

3ZL : sC3p C30; 3Z 3½u�
(A.9)

In the sequel, we shall consider the difference between the

elastoplastic and the purely elastic solution of the problem, i.e.

the difference between (A.9) and (A.4). This problem denoted

as the inelastic problem, is described by the stress field:

RZsKsel, a strain field: 3ineZ3K3el and a displacement

field: uineZuKuel. We note that:

3el ZL : sel C30 3ine ZL : RC3p (A.10)

The difference problem is therefore described by:

R2Sð0; 0dÞ; uine2Cð0dÞ; 3ine ZL : RC3p;

3ine Z 3½uine�

(A.11)
A.2. Transformed parameters of the structure

In the deviatoric stresses space, the Von Mises yield

criterion (Eq. A.7) is a sphere centered in XZH3p, it is,

therefore, convenient to considered the transformed parameter

space represented by

YZXKdev RZH3pKdev R Y2§ðsel;sY Þ (A.12)

where the yield criterion becomes a sphere centered in

dev sel:

f ðsel;Y;sY ÞZ
3

2
ðdev selKYÞ

: ðdev selKYÞKs2
Y (A.13)

In the transformed parameters space, the difference problem

described by (A.11), can be written under the following form

R2Sð0; 0dÞ; uine2Cð0dÞ;

3ine ZL* : RC
1

H
Y; 3ine Z 3½uine�

(A.14)

where L*, denoted as the modified elasticity compliances

tensor is a 4th order tensor defined by:

L*
ijkl Z

1Cn

E
C

1

H

� �
dikdjl Cdijdkl

� �

K
n

E
C

1

3H

� �
dijdkl (A.15)
A.3. Asymptotic response of a structure under cyclic loading

In order to asses the elastic and plastic shakedown zone of

the structure, one has to refer to the following elastic

shakedown theorem proved by Mandel, Zarka and Halphen

in [28].

For a Standard Generalized Material with linear kinematic

hardening, in the transformed parameters space, if on the

periodic loading path, the intersection of all local yield surfaces

centered on dev sel is non-void, we have an elastic shake-

down and the transformed parameters of the structure at the

ultimate state are inside the intersection of all yield surfaces.

For a general presentation of shakedown results see [28,16,

17,36].

As a consequence of the preceding result, in each point

x2U the variation of the elastic solution defined as:

k* Zmin
Y

f max
t2½0;T�

f ðsel;Y;sY ÞCs2
Y g (A.16)

assures an elastic shakedown if k*%s2
Y , and a plastic

shakedown if k*Os2
Y .

In the particular case of a radial path, the length of the

loading path in the deviatoric stress space

del Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
dev sel

maxKdev sel
min

� �
: dev sel

maxKdev sel
min

� �r

(A.17)

assures an elastic shakedown if del%2sY and otherwise a

plastic shakedown.
A.4. Construction of the shakedown state

The construction of the shakedown state is performed

iteratively from elastic computations and the solutions of the

difference problem (37) using the following algorithm:

(1) compute sel
min and sel

max as elastic solution of (A.4)

(2) construct the transformed parameters in each point

according to the nature of the estimated limit state

(3) compute the solution of the problem (A.14)

(4) estimate from the preceding solution the plastic strains.

Elastic shakedown - First we compute a step by step analysis

of the first half cycle with the real elastoplastic behavior.

We obtain the transformed parameters Y1 at the end of this first

half cycle.

Second since the final transformed parameters Yl will be

such as Yl2§ðsel
min;sY Þ and Yl2§ðsel

max;sY Þ, Y1 are locally

projected orthogonally on the local intersection of the plastic

yield surfaces, giving Yl. Then the steps 3 and 4 of the general

procedure are performed.

Plastic shakedown - In this case, only mean the value and a

bounding range of the transformed parameters can be

estimated, as displayed in (Fig. A1). For the mean value and

respectively the lower bound we obtain
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Ym Z
1

2
dev sel

max Cdev sel
min

� �
(A.18)

DYmin Z dev sel
maxKdev sel

min

� �

K2sY

dev sel
maxKdev sel

min

sdev sel
maxKdev sel

mins
(A.19)

where the norm k$k is defined as in Eq. (A.17). The upper

bound is obtained in the following way. Suppose the two

extremal yield surfaces, centered in ðdev sel
minÞ and, respect-

ively, in ðdev sel
maxÞ in the transformed parameters space,

move away from each indefinitely, then the amplitude of the

transformed parameters grows indefinitely and its rate _Y tends

toward the elastic loading rate ðdev _sÞ in the direction

dev sel
maxKdev sel

min

� �
. Therefore, we shall assume that:

_YZ dev sel
maxKdev sel

min

� �
(A.20)

The ultimate plastic flow rate 3
p
N by performing the steps 3

and 4 of the general procedure with _Y.

From the plastic flow rule we deduce that the transformed

parameter Yu at the ultimate state is on the yield surface, and

the plastic strain rate is an internal normal to it. As a

consequence, the value of the ultimate transformed parameter

is:

Yu Z dev sel
maxKsY

_3Np
s _3Np s

(A.21)

The upper bound of the transformed parameter is deduced

from Yu and Ym:

DYmax Z 2 YuKYm

� �

Z dev sel
maxKdev sel

min

� �
K2sY

_3Np
s _3Np s

(A.22)
A.5. Iterative procedure

The preceding procedure has generally to be applied

iteratively in order to take into account the fact that some

regions of the structure remain elastic during the entire

evolution of the structure, whether other are submitted to

elastic shakedown.

The procedure is initiated with fe
p
0;X0;Y0g. We the structure

is partitioned in regions where plasticity mechanisms are active

and inactive. This is decided by the relative position of Y0 with

respect to the intersection of all local yield surfaces centered in

dev sel at the computed time instants. If the Y0 the plasticity
mechanisms are inactive and active otherwise. If no there is

plastic evolution, 3
p
l Z3

p
0 and the elastic compliances tensor D

is used in order to solve the inelastic problem (A.11).

If the plasticity mechanisms are active Yl are chosen equal

to the orthogonal projection of Y0 on the intersection of yield

surfaces. Moreover, the modified elastic compliances tensor

L* is used to solve the modified inelastic (A.14).

A global elastic computation provides the unknown fields:

Yli
for the inactive zone and 3

p
li

for the active zone.

Finally the position of Yli
with respect to the intersection of

yield surfaces is checked with respect with the initial

assumption that the point is in an active or inactive zone and

correction are done.

Iterations are then performed up to the stabilization of the

active and inactive zone of the structure.
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