
Numerical and experimental modal analysis of the reed
and pipe of a clarineta)

Matteo L. Facchinetti
Laboratoire de Me´canique des Solides and Laboratoire d’Hydrodynamique, CNRS-E´cole Polytechnique,
91128 Palaiseau Cedex, France

Xavier Boutillonb)

Laboratoire d’Acoustique Musicale, CNRS-Universite´ Paris 6-Ministère de la Culture, 11 rue de Lourmel,
75015 Paris, France

Andrei Constantinescu
Laboratoire de Me´canique des Solides, CNRS-E´cole Polytechnique, 91128 Palaiseau Cedex, France

~Received 12 December 2001; revised 8 August 2002; accepted 24 January 2003!

A modal computation of a complete clarinet is presented by the association of finite-element models
of the reed and of part of the pipe with a lumped-element model of the rest of the pipe. In the first
part, we compare modal computations of the reed and the air inside the mouthpiece and barrel with
measurements performed by holographic interferometry. In the second part, the complete clarinet is
modeled by adjoining a series of lumped elements for the remaining part of the pipe. The parameters
of the lumped-resonator model are determined from acoustic impedance measurements. Computed
eigenmodes of the whole system show that modal patterns of the reed differ significantly whether
it is alone or coupled to air. Some modes exhibit mostly reed motion and a small contribution of the
acoustic pressure inside the pipe. Resonance frequencies measured on a clarinet with the mouthpiece
replaced by the cylinder of equal volume differ significantly from the computed eigenfrequencies of
the clarinet taking the actual shape of the mouthpiece into account and from those including the
~linear! dynamics of the reed. This suggests revisiting the customary quality index based on the
alignment of the peaks of the input acoustical impedance curve. ©2003 Acoustical Society of
America. @DOI: 10.1121/1.1560212#

PACS numbers: 43.75.Ef@NHF#
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I. INTRODUCTION

The clarinet is usually considered as the association
linear resonator, the pipe, and a nonlinear excitor, the re
subject to the air flow from the mouth. Alternatively, one c
consider the air column and the reed as a linear system
ject to nonlinear boundary conditions. This is the approa
retained in this article where the reed is considered as a
ear mechanical system coupled to the pipe and where
interaction with the player is not treated. Nonlinear pheno
enon such as the interaction between the reed and th
across the reed-slit, the contact forces between the reed
the lay, and the interaction between the reed and the play
lip will be included in a subsequent piece of work as nonl
ear boundary conditions to the normal modes that are
scribed here. Humidity of the reed and the player’s lip a
have a damping role which is not considered in this mo
analysis of a pipe coupled to a~dry! reed.

Acoustical studies of the clarinet have so far represen

a!Part of this work was presented in ‘‘Application of modal analysis a
synthesis of reed and pipe to numerical simulations of a clarinet,’’ invi
paper at the 140th meeting of the ASA, Newport Beach, CA, Decem
2000 @J. Acoust. Soc. Am.108, 2590~A!#, in ‘‘É tude modale d’une clari-
nette,’’ Proceedings of the Colloque National en Calcul de Structu
Giens, France, May 2001, and in ‘‘Modal analysis of a complete clarin
Proceedings of the International Conference on Acoustics, Rome, I
September 2001.

b!Electronic mail: boutillon@lms.polytechnique.fr; present address: Lab
toire de Mecanique des Solides, E´cole Polytechnique, 91128 Palaisea
Cedex, France.
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the mouthpiece of a wind instrument by its equivalent v
ume. This study goes beyond this approximation and p
sents the three-dimensional distribution of the pressure in
upper part of the instrument.

Studies of the pipe of the clarinet have traditionally be
expressed in the frequency domain and were based on m
surements or computations of input acoustic impedan
However, numerical simulations of this instrument operate
the time domain and are usually based on the reflection fu
tion of the pipe. Recent experimental studies have adop
the time domain approach with direct measurements of
reflection function. Abundant literature extensively cove
these subjects: for general presentations, see Refs. 1–4

Studies of the reeds are far less extensive and the
chanical behavior of cane is still subject to discussion. T
simplest reed model, a spring, is implicitly used by ree
makers when they rate them by their so-called ‘‘strengt
which corresponds to the mechanical compliance. Exp
mental studies have proposed values for the complianc
the reed.1,5,6Associated with various models of the pipe a
excitation, this model has been used in numerical simulati
which were successful in describing basic features of
dynamics of clarinet-like system.7–9 Music-oriented algo-
rithms have also been proposed in which the values of
parameters describing the excitor and the resonator are
justed in order to obtain realistic sounds instead of accura
describing their mechanical behavior.10,11 However, this
model is obviously insufficient to describe quality-based c
teria: otherwise all reeds in a given commercial box~with
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FIG. 1. The clarinet: its parts and thei
respective models~not to scale!.
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similar strength! would suit a given player, but this is not th
case.

The next modeling step is the single-degree-of-freed
oscillator. Although some simulation algorithms12 have been
very successful in producing realistic sounds,13,14 this is not
sufficient in itself to assert the physical validity of a mod
One degree of freedom is not sufficient to account for crite
such as reed quality. Stewart and Strong15 and Sommerfeld
and Strong16 used a refined model of the reed as a nonu
form beam. In the latter study, the pipe was only sligh
simplified compared to a real clarinet and the player’s
column ~including the lungs! was also taken into accoun
There is no fundamental difference between this simula
and those based on a simple oscillator model for the r
since the interaction with the rest of the system is avera
along the beam. The beam model is needed if one wan
take into account the curved shape of the mouthpiece
which the reed beats during large amplitude motio
Gazengel17 derived a simple oscillator model from a bea
equation. In his time-domain simulation, the mass of the
cillator is recalculated at each time step as a function of
position of the reed, introducing by this means the nonlin
behavior of the reed contact.

Modeling the reed as a continuous system is the cur
state of research. Several examples of modal analysi
clarinet reeds with holographic interferometry have been p
sented in conferences over the recent years,18–20 but never
published. One example of finite-element modeling based
measurements of the mechanical properties of cane has
reported.21 Another~unpublished! pioneering study has bee
done by Pinard and Laine when they were students at
École Polytechnique~France!. The experimental moda
analysis and the finite-element modeling of isolated re
that are presented in the following are a development of
unpublished work. To our knowledge, no model of the re
as a continuous system in association with the air column
been proposed.

The model proposed here is aimed at overcoming s
eral limitations of previous approaches. Besides giving
means to review the approximations of the classical mo
this new approach is also a first step toward numerical si
lations of the instrument based on modal projection22,23

rather than on propagation schemes represented by refle
functions.

The different parts of a clarinet—reed, mouthpiece, b
rel, upper and lower parts of the pipe, bell—are shown
Fig. 1 together with their respective models. Fluid and so
J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
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finite-element models~FEM! for the reed and the beginnin
of the pipe and a lumped elements model for the main par
the pipe are used.

The work presented here begins with the modal analy
of the isolated reed. In each subsequent section, anothe
ement of the model is added, finally resulting in a compl
instrument. In addition, the modes of the reed associa
with the mouthpiece and barrel are compared with the res
of experimental modal analysis.

II. THE REED

A. Construction of the numerical model

Establishing a finite element model requires the deter
nation of the geometry of the reed, the choice of a const
tive law, the determination of the mechanical parameters
well as the appropriate boundary conditions.

A series of three reeds have been measured. The th
ness of each reed was measured with a coordinate meas
machine~Mitutoyo EURO-M 574 and Johansson Saphir
were used!. Approximately 200 points, arbitrarily chosen o
the reed surface, have been measured@Fig. 2~a!#. The geo-
metrical data for the model are interpolated from the m
sured values. Interpolation between measured points
done by using a fourth-order polynomial, resulting in a
giving the thickness map shown in Fig. 2~b!. The reed is
assumed to be symmetrical with regard to its longitudi
axis.

The shape of the reed was measured using a high p
sion optical projector~Macro Dynascope 5D, by Vision En
gineering with Metronics Quadra-Check 4000 interpolati
software! with the results shown in Fig. 2~c!. The precision
of the geometrical measurements of the reed can be
mated to'2 mm.

Reeds are made out of cane which is considered her
a purely elastic, transversely isotropic, homogeneous m
rial. Viscosity and plasticity, related to energetic losses, h
been neglected at this step of the analysis. The homogen
hypothesis will be analyzed a posteriori in Sec. V. In t
current state of knowledge, we have found no other plaus
description that could be expressed quantitatively.

A discussion of losses in cane has been given lately
Marandaset al.24 and Obataya and Norimoto.25 The former
found out that dry cane is viscoelastic and turns viscopla
when wet. This implies that static tests on wet cane are
appropriate to measure Young’s moduli. Obataya propo
values of the quality factorQ of the order of magnitude o
2875Facchinetti et al.: Modal analysis of the clarinet
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100 varying with frequency, relative humidity, and intern
state of cane. Since only individual modes of the reed
considered here losses can be ignored. They would nee
be taken into account in modeling the actual dynamics of
instrument.

Under these assumptions, five parameters are need
describe the material: densityrs , longitudinal and transvers
Young’s moduliEL andET , transverse to longitudinal shea
modulus GLT , and longitudinal-transverse Poisson ra
nLT . The values adopted here are given in Table I. The v
ues forrs , EL , andnLT were obtained by Pinard and Lain
and result from static measurements on a piece of dry c
given by a reed maker. Obataya and Norimoto give roug
the same value for the main Young’s modulusEL of dry cane
in the frequency that is relevant here~2–6 kHz!. Their mea-
surements show that this value decreases linearly with
relative humidity level~RH!, EL decreasing by around 30%
for a variation of 100% in RH. The other parameters we

FIG. 2. Geometry of the reed, with dimensions in mm:~a! points actually
measured,~b! interpolated thickness,~c! estimated contour.
2876 J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
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also obtained by Pinard and Laine. Their work has been p
neering in several respects. In particular, they were the
to match eigenfrequencies and modal patterns of reeds
tained by holographic interferometry with those obtain
with a finite-element model.

As boundary condition, we consider the reed rigid
clamped on the section corresponding to the ligature
having a stress-free boundary elsewhere.

B. Computed eigenmodes

This model has been implemented on a standard
~450 MHz, 250 Mbyte RAM, Linux! using linear Love–
Kirchoff plate elements in theCAST3M finite-element code.
The first modes of a reed are presented in Fig. 3. A clas
cation of the modes is needed for referencing and an atte
is made here. Since modal patterns with closed mo
lines have not been encountered, it is intuitively appealing
label the modes according to the number of intersecti
between the nodal lines and the edges of the reed.
the symmetric reed considered here, a mode is labeledLnTm.
‘‘ L’’ stands for longitudinal and the first indexn is the
number of intersections of nodal lines with the edge~s!
parallel to the main axis. Such nodal lines include the o
imposed by the boundary condition at the ligature. ‘‘T’’
stands for transverse and the indexm is the number of inter-
sections of the nodal lines with the tip edge of the re
Modes appear in an order which can be expec
(L1T0, L1T1, L2T0, L1T2, L2T1), given the larger flex-
ibility in the direction transverse to the reed and the thic
ness distribution.

The generalized mass of a mode is:

m5uTM su, ~1!

whereu represents the reed displacement for the mode
M is the mass matrix of the reed. For a unit value of t
maximum displacement in each mode, the modal masses
7, 0.35, 0.47, 0.063, and 0.094 mg for theL1T0, L1T1,
L2T0, L1T2, and L2T1 modes, respectively. Along with
modal patterns, these values establish a comparison betw
modes. These mass values can also be compared to the
of magnitude of the real mass of the moving reed. At the
of the reed, the thickness is about 1/10 mm and the width
mm. For a densityrs5450 kg m23, the mass of a moving
portion of the reed of lengthl ~in mm! is (0.593 l ) mg.

III. MODAL COMPUTATION OF THE REED
ASSOCIATED WITH MOUTHPIECE AND BARREL

This section analyzes how the dynamics of the reed
influenced by air loading and provides a comparison betw
results given by the model and experiments presented in

TABLE I. Material properties for dry cane used in reeds, as given by Pin
and Laine.

Density rs5450 kg/m3

Longitudinal Young modulus EL510 000 MPa
Transverse Young modulus ET5400 MPa
Shear modulus GLT51300 MPa
Poisson ratio nLT50.22
Facchinetti et al.: Modal analysis of the clarinet
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II. The system considered now is composed of the reed,
mouthpiece, and the barrel and is represented usin
coupled fluid–solid model.

A. Numerical model

The full model of reed, mouthpiece, and open barre
shown in Fig. 4. The internal shape of the mouthpiece~a
Selmer HS* ) has been carefully measured by means of
coordinate measuring machine used for the reed. The b
is considered as a cylindrical bore with a diameter of 15 m
The air volume inside the mouthpiece and the barrel is m
eled with linear tetrahaedric and prismatic finite elements
compressible elastic fluid.

FIG. 3. First five computed modes of an isolated reed. Modes are lab
according to the number of modal lines perpendicular to the main axis~Ln!
and parallel to it~Tm!.
J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
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The acoustic pressure at points of the open air surfa
is considered to be zero. The normal derivative of the aco
tic pressure on the walls of the mouthpiece and the bar
corresponding to air flow, is also set to zero. The bound
condition coupling the reed and the mouthpiece involves
stress in the solid and the velocity of the fluid and will b
given explicitly in the following.

The eigenvalue problem for a coupled solid–fluid sy
tem is expressed in the continuous formulation by
following:26

div C¹u2v2rsu50, ~2!

div
1

r f
“p1v2

1

c2r f
p50, ~3!

where p represents the acoustic pressure in the fluid. T
densities of solid and fluid arers andr f , respectively. The
speed of sound isc, the angular frequency of the motion isv,
andC denotes the elasticity matrix of the solid.

The boundary conditions coupling the fluid and the so
parts are

s"n52pn, ~4!

]p

]n
5r fv

2u"n, ~5!

wheren represents the unit vector normal to the solid surfa
ands5C¹u the stress tensor.

In order to formulate these equations as a standard
genvalue problem, a new variablep52(1/v2)p must be
introduced.26 The equations and boundary conditions beco

div C¹u2v2rsu50, ~6!

div
1

r f
“p2

1

c2r f
p50, ~7!

v2p1p50, ~8!

s"n52pn, ~9!

]p

]n
52r fu"n. ~10!

To the preceding equations, we can associate the foll
ing LagrangianL denoting the variational formulation of th
problem:

ed

FIG. 4. Reed and volume of air inside the mouthpiece mounted on an o
barrel.
2877Facchinetti et al.: Modal analysis of the clarinet
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FIG. 5. Projection of four eigenmodes on the reed~see
the text for labels!. Top pictures: computed normalize
eigenmodes of the association of a reed with mou
piece and barrel. In this representation, a cyclic gr
scale produces fringes of equal differences in norm
displacement, allowing a comparison with the mod
patterns observed experimentally. Bottom picture
modal patterns measured by holographic interferome
on one good reed mounted on the mouthpiece attac
to the barrel. The resonance is not very sharp owing
damping, hence the rounded eigenfrequencies. The p
tographed section of the reed does not have the sa
height between the various experiments and the sim
lations.
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2 EVs

¹uC¹u dv1
1

2 EV f

1

r fc
2 p2 dv

2v2S 1

2 EVs

rsu
2 dv2

1

2 EV f

1

r fc
2 ~“p!2dv

2E
V f

1

r fc
2 pp dv2E

]V
ps"n dsD , ~11!

whereVs andV f represent the solid and fluid volumes, r
spectively, and]V represents the boundary between the
volumes.

Finally, the problem is expressed in its discrete form
the following eigenvalue problem:

S F K s 0 0

0 K f 0

0 0 0
G2v2F M s 0 2N

0 0 K f

2NT K f
T 2M f

G D F u
p
p
G5F 0

0
0
G ,

whereK s ~respectively,K f) and M s ~respectively,M f) are
rigidity and mass matrices of the solid~respectively, fluid!
part of the system andN is the operator corresponding to th
coupling boundary condition~10! related to the normal vec
tor n. Details of the derivation can be found in Ref. 26.

B. Experimental modal analysis

An experimental modal analysis on reeds by means
holographic interferometry was performed in order to che
the validity of the numerical model of the reed coupled to a
Recent works have been reported in sh
communications.18–20 For various reeds mounted on
mouthpiece under dry conditions Pinard and Laine obser
one mode corresponding to a longitudinal flexion at arou
2200 Hz; one family of modes around 3500–3700 Hz, w
patterns varying from reed to reed, some of them being
2878 J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
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dicative of torsion, others being closer to flexion; and o
family of modes around 5800–6000 Hz, with more compl
patterns.

In measurements presented here, the reed was atta
to the mouthpiece exactly as on the real instrument. Since
ligature was producing strong light reflexions, it wa
replaced with adhesive tape placed slightly further from
tip. A sinusoidally driven loudspeaker was placed clo
to the reed to excite its vibration. For determining the re
nance frequencies a very thin PVDF piezoelectric fi
@poly~vinylidenefluoride!, thickness 0.05 mm, mass 0.06
of which only a part was actually moving# was glued onto
the lower thicker part of the reed, yielding the average
formation near the ligature. Resonance frequencies were
termined using the maximum of the piezoelectric signal. T
experiments were performed under natural humidity. A sa
rated atmosphere would have been preferable but was
possible with the interferometry equipment.

The eigenmodes were visualized by means of la
transmission interferometry. Complete details of the imp
mentation of this classical method are described in Ref.
The images in Fig. 5 represent variations of equal norm
displacement of the reed. The resolution of the system is
the wavelength of the laser, approximately 0.3mm.

The reed was measured either alone, associated wit
open mouthpiece, or with the mouthpiece mounted on
open barrel. The first four measured modes shown in Fig
correspond to the barrel configuration~see Fig. 4!. They are
compared with the corresponding computed modal patte
~see the next section for computation of the eigenmodes! on
top. Results of the holographic measurements show that
maximum displacement of the reed is negligible compared
the distance between the mouthpiece and the reed at
level of excitation. Thus one can be confident that cont
between the reed and the lay, which could possibly make
system nonlinear, does not occur.
Facchinetti et al.: Modal analysis of the clarinet
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TABLE II. Sensitivity analysis: changes in eigenfrequencies when mechanical characteristics of the re
acoustical properties of the air vary. Changes are given in % for a 10% variation of each parameter.

D510%
mean values

EL

104 MPa
ET

400 MPa
GLT

1300 MPa
nLT

0.22
rs

450 kg m23
c

340 m s21
r f

1.23 kg m23

1190 Hz 0 0 0 0 0 9.8 0
2010 Hz 2.4 0 0 0 22.2 0.7 20.4
2680 Hz 0.1 0 0 0 20.2 9.6 0
3700 Hz 1.5 0 3.1 0 24.6 0 0
4010 Hz 0.2 0 0 0 20.2 9.3 0
4740 Hz 4.9 0 0 0 24.8 2.7 20.1
5280 Hz 0.6 0 0 0 20.9 8.1 20.1
6300 Hz 1.7 0.9 4.9 0 26.4 3.2 0
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C. Results

A comparison between computed and measured mo
is displayed in Fig. 5 for the situation described by Fig. 4.
this comparison with holographic measurements, the ‘‘lig
ture’’ of the reed had to be placed slightly beyond its norm
position. This led to a slightly more flexible reed than in t
normal situation. When the reed is coupled to air, one sho
stress that eigenmodes concern the whole system, not jus
reed. Strictly speaking, expressions such as ‘‘reed mod
are inappropriate and refer instead to modes for which
ergy is mostly localized in the reed. Each mode has be
labeled using the notation proposed earlier. The ‘‘R’’ prefix
indicates that we regard the result just as theprojectionof the
four first eigenmodes on the reed subspace. In order to
plify the discussion, we have not attempted to label the
configuration. One can notice that theL2T2 pattern did not
appear in the isolated reed case. One can also notice tha
L1T0 pattern of the reed appears in the two first modes
the coupled system.

The computed modes appear in the same order as
measured ones with eigenfrequencies deviating by 10
20% from measured resonance frequencies. The modal
terns are globally the same despite the fact that no real
is symmetric whereas the numerical model has been ch
symmetric. As expected, the modes are mainly localized
the tip of the reed where it becomes very thin, showing
importance of a precise measurement of the geometry.
though some of the mechanical parameters come thems
from a fit between observation and computation of mode
an isolated reed, the mixed fluid–solid model can be con
ered as valid within the range of approximations retain
here.

Real reeds have natural asymmetries due to their ge
etry or to nonuniform mechanical properties. One notic
that the asymmetry seems stronger for the lowest mode
for any other one.

D. Sensitivity analysis

The sensitivity analysis of the eigenfrequencies to va
tions in mechanical parameters describing the reed an
acoustical properties of the air is presented in Table II. T
air volume is that of Fig. 4. Parameters are varied by
above and below their average values~i.e., 10% overall! and
the corresponding overall variations of eigenfrequencies
reported. The value of the Poisson ratio appears to be i
, Vol. 113, No. 5, May 2003
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evant. Eigenfrequencies 1190, 2680, and 4010 Hz vary
early with the speed of sound. This is also almost the case
the mode at 5280 Hz. Without looking at the modal patte
of air pressure or reed displacement, one can infer that t
correspond to ‘‘ ‘air modes,’’ with energy mostly localized i
the ~short! pipe. Conversely, the mode at 3700 Hz is n
influenced by air characteristics; sensitivity to the sh
modulusGLT indicates that the reed is subject to torsion~see
the second mode of Fig. 3! and is poorly coupled to the pip
~Fig. 6!. To a lesser degree, this is also the case of the m
at 6300 Hz. The mode at 4740 reveals a (EL /rs)

1/2 depen-
dency of the eigenfrequency. It is mostly a ‘‘reed mod
involving primarily a longitudinal deformation. The mode
2010 Hz is apparently a mode in which air and reed
strongly coupled. It is interesting to notice that the transve
Young’s modulus does not seem to influence any frequen
The measurement of its precise value is therefore less
ticularly important.

E. Evolution of the eigenfrequencies

Another way of examining how the reed is coupled
the acoustic field is to follow the evolution of the eigenfr
quencies when the reed is loaded by the air volume
mouthpiece and barrel. A decrease of the eigenfrequen
and a dominance of the longitudinal flexion occurs in t
eigenmodes~Fig. 7!.

The frequencies of the first two modes of the$reed,
mouthpiece, barrel% system are mainly imposed by the res
nance of the air cavity. In both modes, the reed underg
mainly longitudinal flexion. The frequency of the torsio
modeL1T1 ~3257 Hz for the isolated reed! does not vary

FIG. 6. Computed eigenmode at 4119 Hz in a mixed solid-air situati
acoustic pressure inside the mouthpiece and barrel.
2879Facchinetti et al.: Modal analysis of the clarinet
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significantly, meaning that this mode is weakly coupled
the air cavity. The same phenomenon can be noticed for
modeL1T2 at 5840 Hz for the isolated reed. One can co
clude from Fig. 7 and from the observation of the rath
uniform pressure in the pipe at these modes~not shown here!
that this mode also is weakly coupled to the pipe.

IV. MODAL COMPUTATION OF THE WHOLE CLARINET

In order to simulate the modal behavior of the compl
clarinet, we have associated a finite-element model of'10
cm of pipe with lumped elements representing the rest of
pipe and matching its acoustic input impedance. This can
done since at the outlet of the barrel, the acoustic field c
sists essentially of plane waves. An example of acoustic p
sure in the mouthpiece is represented in Fig. 8. The mod
that of a complete clarinet and corresponds to the low
mode at 311 Hz of the medium C] fingering combined with
the opening of the register key~see the following for the
complete list of modes in this configuration!. The length of
mouthpiece represented here is 32 mm and correspond
the tapered part. One can see that the acoustic waves
already be considered as plane waves within a very g
approximtation.

The lumped-element oscillators~shown in generic form
in Fig. 1! are coupled to the finite-element barrel by mea

FIG. 7. Evolution of the eigenfrequencies~left scale, in hertz! when the
system evolves from the isolated reed~left! to $reed1mouthpiece% ~middle!
and $reed1mouthpiece1barrel% ~right!. Black lines represent ‘‘primary
reed’’ modes, dotted lines ‘‘primary air’’ modes, and dash-dot lin
‘‘mixed’’ modes.

FIG. 8. Acoustic pressure inside the tip part of the mouthpiece for a 311
mode of the complete clarinet. The acoustic pressure decreases mon
cally from the tip to the largest section by 14%.
2880 J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
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of a rigid plate of negligible mass, as shown in Fig. 9. T
plate and the lumped-element oscillators are suppose
move only in the longitudinal axis of the instrument. Th
lumped elements are placed at the~virtual! junction between
the barrel and the lower part of the clarinet.

It is now explained how the numerical values of th
lumped elements are calculated on the basis of meas
ments provided by Gibiat28 on several notes of a Noblet B[
clarinet. Results of these measurements are supposed to
resent theinput acoustical impedance of the instrument.
order to measure this input impedance, a reference plane
defined by Gibiatet al. by replacing the mouthpiece with
portion of cylindrical tube of equal volume. This is the usu
‘‘equivalent volume’’ approximation which we discuss lat
on. Prior to matching the impedance of the lumped eleme
to the measured input acoustical impedance of the pipe,
latter must therefore be transported from the input plane
ward the open end of the pipe. The ‘‘transportation distan
is equal to the length of a cylinder having the volume of t
mouthpiece and the barrel.22,29

An oscillator is associated with each measured imp
ance peak. At the angular frequencyv the mechanical im-
pedance of each elementary oscillator in Fig. 1 is

Zm~v!5 i S 1

mv
2

v

k1 ivr D
21

, ~12!

wherem, r, k are respectively the mass, damping, and st
ness of the lumped elements.

In this ‘‘comb-like’’ association, the impedances of th
oscillators add. The dual association where the admittan
add is ‘‘chain-like.’’ Each elementary oscillator of Fig. 1 is
mass chained with a comb of a damper and a spring, lea
to Eq. ~12!.

The parametersmi , r i , ki of each oscillator~a tooth of
the large comb! are identified by minimizing a cost func
tional J measuring the distance between computed and m
sured moduli and phase of the impedance:

J5auMod~Zcomp!2Mod~Zmeas!u

1buArg~Zcomp!2Arg~Zmeas!u. ~13!

The initial values of the parameters for each oscilla
are obtained by identifying each single resonance peak
the final values are obtained by running a Nelder–Mead s
plex search algorithm. A comparison between the measu
and the identified modulus and phase of the acoustic imp
ance of the lowest F fingering~E[ heard! of the clarinet is
presented in Fig. 10. The impedance represented is no
input acoustical impedance but the impedance of the lo
part taken at the~virtual! junction between the barrel and th
lower part of the clarinet. Therefore, the peak frequencies
not the eigenfrequencies of the instrument. The acoust
impedance represented here is the ratio of the acous
pressure to the air velocity, normalized byrc. The average
modulus on a logarithmic scale would be 1 for an ideal lo
cylindrical pipe. According to Gibiat, it is less here due
internal losses, radiation, and presumably the complexity
the pipe.

,

z
ni-
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e
FIG. 9. Modal representation of a complete clarinet: amplitude of the motion of the lumped-element oscillators~left!, air pressure in the upper part of the pip
~middle!, and deformation of the reed~right!. Eigenmode 2 for note treeble F#~fingering of C# medium plus opening of register key! and eigenmode 8 for
note low E[ ~low F fingering!.
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Two eigenmodes of the complete instrument for diffe
ent fingerings are shown in Fig. 9. One eigenmode has
amplitudeper se. For each eigenmode in Fig. 9 the~relative!
amplitude of the motion of the oscillators is represented
the length of a straight line extending from the plate. O
notices that the pressure distribution is not uniform in
mouthpiece. Examining other similar figures reveals that
motion of the reed can differ significantly from mode
mode of a given note, even if it follows aL1T1 pattern. This
means that, although the first modes of the isolated reed
cur at significantly higher frequencies than those conside
here, a single degree of freedom for the reed is not appro
ate since it would not account for these differences. Wh
the reed undergoes mostly longitudinal flexion, it is to
expected that the beam model used by several authors15,16,30

would give comparable results.
For the low F fingering~sounding one tone lower!, the

first eigenfrequencies are 166, 464, 743, 1147, 1436, 1
1950, 2058, and 2201 Hz. They are 373, 1035, 1541, 16
1893, 1930, and 2309 Hz for the medium G fingering a
311, 735, 1213, 1467, 1578, 1865, and 2211 Hz for the h
G], played with medium C] fingering and opening of the
register key. These frequencies are represented in Fig. 1
order to evaluate their harmonicity. Eigenfrequencies
normalized by their ratio to the theoretical musical frequen
for the note under consideration~respectively, 156, 349, an
740 Hz!, rounded to the nearest integer. For example, a
Hz eigenfrequency for note A4~440 Hz! would be normal-
ized by 2, nearest integer to 900/440. For this high note,
register key does not eliminate the first mode of the ins
J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
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ment but the sound will be locked approximately on the s
ond mode. The lowest mode is very roughly at half the pi
of the note and is therefore normalized by the integer 2.

The sets of solid lines in Fig. 11 represent the compu
eigenfrequencies listed above of the complete instrum
The sets of dashed lines are resonances of the pipe as
tracted from the measurements of the input impedance of
pipe. This set represents the traditional view of the inst

FIG. 10. Acoustical impedances~ratio of the acoustical pressure to the a
velocity, normalized byrc) for the low F note of the clarinet. Solid lines
acoustical impedance of the pipe as measured at the closed end of the
and transported at the~virtual! junction between the barrel and the lowe
part of the clarinet. Dashed lines: impedance of the set of lumped oscilla
best matching the impedance of the pipe at the junction.
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ment where the volume of the mouthpiece has been repla
by a cylindrical pipe having the same volume and closed
one end. The sets of dotted lines represent computed ei
frequencies of the air column with a rigid boundary on t
reed surface. Instead of the completely closed pipe of
traditional modeling, one assumes here a slight opening
tween the reed surface and the lay of the mouthpiece wi
zero pressure condition.

V. DISCUSSION AND PERSPECTIVES

A. Alignment of resonances and low-frequency
approximation

The traditional model of the mouthpiece is that of
cylinder of equivalent volume. Within this approximatio
there is no point in measuring the input acoustic impeda
above a certain limit. This limit can be evaluated by t
length scale at which the mouthpiece geometry differs from
cylinder. Taking as an order of magnitude for these geome
cal differences a length of 1 cm is consistent with a 2.5 k
frequency limit beyond which input acoustical impedanc
would begin to differ noticeably. In the approach followed
this paper, the equivalent volume approximation is ab
doned and the acoustical input impedance of the pipe wo
keep full utility and validity up to the frequency of the firs
transverse mode of the pipe~13.3 kHz for the clarinet!.

The cylinder of equivalent volume approximation for th
mouthpiece is assumed to be correct for low frequencie
appears in Fig. 11 that this approximation is not accepta
enough to be used in conjunction with an alignment of pe
criteria. One can see in Fig. 11 that variations in eigen
quencies due to the model change are significant with reg
to the alignment of resonances,even at low frequencies. In
other words, the deviations from alignment in the tradition
view ~equivalent volume approximation! are of the same or
der of magnitude as the frequency shifts due to the prese
of the reed and the prismatic shape of the mouthpiece.

FIG. 11. Normalized eigenfrequencies~logarithmic scale! of the complete
clarinet, pipe with reed~solid symbols!, of the pipe with a fixed reed~dash
dot!, and normalized resonance frequencies measured on the pipe whe
mouthpiece replaced by its equivalent volume~dashed!. See the text for the
definition of the normalization. Fingerings are low F, medium G, and h
G] ~medium C] with register key! corresponding to notes E[ 3, F 4, and
G] 5.
2882 J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
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B. Coupling of torsion modes to the air

The association of reed, mouthpiece, and a short o
portion of the pipe is shown in Fig. 6. The modal acous
pressure at an eigenfrequency of 4119 Hz is displayed in
6. In this mode, the reed undergoes torsion in a pattern v
similar to theL1T1 mode of the isolated reed~Fig. 3!. The
characteristic distance of this modal deformation is sign
cantly smaller than half the wavelength in air at that fr
quency (l'10 cm); the resulting acoustical short-circu
prevents any efficient coupling of the reed to the air in t
mouthpiece. This explains the fairly uniform acoustic pre
sure for this mode, except very near to the reed. Howe
there are several reasons why these modes may be impo
in the actual playing.

First of all, the flow entering the air channel between t
reed and the lay is governed by a nonlinear equation. Th
fore, antisymmetric reed modes may have an influence
the global flow entering the pipe.

It has been shown that the antisymmetric reed modes
very weakly coupled to the acoustic~far!field in the clarinet.
This is not to say that these modes play no role in the
namics. Asymmetries or, better said, unevenness in the
metric or constitutive properties of reeds induce asymmet
of longitudinal reed modes and consequently an asymm
in the local acoustical field. Due to its small relative mod
mass, the torsion mode can be easily excited at a freque
different from its resonant frequency and therefore may p
a significant role in the actual dynamics of the reed. T
coupling factor would then be the local acoustic field. Th
may be an explanation for the player’s experience that
different mouthpieces, the preferred reeds are also differ

This modal analysis is performed on a symmetric re
This is not the case in reality as shown for example by
first mode in Fig. 5. The so-called torsion modes are likely
be associated in the fluid domain to a flow different fro
zero and therefore couple to the plane waves inside the p

C. Symmetry

Experimental modal analysis shows that some re
have strong asymmetries. Makers can be expected to be
cessful in controlling the symmetry of the geometry; the
fore, the cause of modal asymmetries lies most probabl
the lack of homogeneity of the cane used for the reed du
its natural character. Pinard, Laine, and Vach31 examined 24
reeds, ranked by two professional players. They obser
that the two reeds ranked as good and very good were s
metric whereas the poor reed had asymmetrical high mo
Based on limited sampling of reeds and players, no defi
conclusion can be drawn. Intuition would suggest that asy
metry is not a desirable feature for a reed. However, we th
that it might not be so.

Visualizing the lip motion in brass playing shows th
lips do not move symmetrically and that this factor vari
from player to player. Since brass mouthpieces are symm
ric, one can conclude that the mechanical properties of
~possibly coupled to dentition and the mouth cavity! are not
symmetric for all brass players. One can hypothesize that
same is true among clarinet and saxophone players. Ano

the
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observation is that different players do not always prefer
same reeds in a given box, even for common musical ta
style, etc., and the same clarinet and mouthpiece. A g
match between a player and a reed could mean that a g
asymmetry in a reed would fit well the natural asymmetry
a given player and not so well with another one. It has e
been observed that a few players use reeds which fit alm
none of their colleagues. It would be interesting to test th
players and their preferred reeds with regard to the symm
hypothesis.

VI. CONCLUSION

The modal analyses of reeds and of a few notes of
whole clarinet were performed. Results have shown the
lowing points.

~1! A numerical model of cane based on the hypothe
of transverse isotropy is suited to describe modal pattern
reeds. Some of the numerical hypotheses~homogeneity,
symmetry, damping! can be released but this would neces
tate additional measurements.

~2! When coupled to air, the reed is subject to deform
tion patterns which are not always those of its own norm
modes. Therefore, the normal modes of isolated reeds ca
be taken as a source for the acoustic field in the mouthpi
Specifically, coupling must be taken into account.

~3! Torsion modes of reeds generate a strong but v
localized acoustic field in the mouthpiece. It remains to
examined how this would interact with asymmetries in low
modes through the excitation process.

~4! Acoustic waves are already plane within a very go
approximation in the cylindrical part of the mouthpiec
Since finite-element modeling of air is interesting insofar
the waves are not plane, the air volume in the barrel an
large proportion of that in the mouthpiece can be included
the lumped-element model, reducing significantly the co
putational burden.

~5! The shape of the mouthpiece and the dynamics of
reed influence the alignment of resonances in the same
portion as the misalignment derived from the customary
servation of the input acoustical impedance. Therefore,
approximation of the equivalent volume is too coarse to
used when looking at harmonicity of resonances.

This study shows the need for input impedance meas
ments at higher frequencies than usually performed. It c
for simplified formulations of the acoustic field in the mout
piece. The procedure outlined here could be used to
these formulations. Finally, the method paves the way
numerical simulations of the dynamics of the clarinet ba
on modal projection and taking into account the whole co
plexity of the reed.
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