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a b s t r a c t

The aim of this paper is to present an alternative solution to the finite element method for the determi-
nation of the elastic stress field for an axi-symmetric notched tube under tension and bending loadings.
The proposed solution is an extension of the work of Filippi and Lazzarin (2004) [8] to tubular specimens.
It provides the stress field distribution along the notch bisector. A good agreement was found between
the solution proposed in the present paper and the results from a finite element analysis. A sensitivity
analysis is performed to establish the domain of validity of the solution with respect to the dimensions
of the notched tube.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Fatigue design is a complex engineering field where materials,
geometry and loading define the lifetime of a structure. The fatigue
design methodology is a two step process based on a mechanical
analysis devoted to the computation of the stresses and a fatigue
analysis devoted to lifetime prediction. As fatigue cracks initiate
favorably near notches, holes or generally in regions of stress con-
centration, it is important to estimate stresses precisely in these
parts in order to obtain accurate lifetime predictions.

Additional difficulties to estimate the fatigue life of notched
components come from different factors which are essentially re-
lated to the stress gradient [29,25,12,13] or the scale effect
[10,26,20]. These factors influence the fatigue process leading to
unsatisfactory fatigue predictions when classical fatigue criteria
such as the Crossland criterion or the Findley criterion are
employed.

Fortunately the application of these fatigue criteria combined
with different methods such as the critical distance [15,23,30] or
modified to incorporate the influence of the stress gradient [24]
shows good agreements to estimate fatigue limits. However, all
these techniques need the knowledge of the stress distribution
near the notch tip either to compute the stress gradient or to com-
pute the stress components at a different distance from notch tip.

To achieve the first step of the fatigue design methodology,
engineers can use different numerical or analytical methods and

tools. Numerical methods like finite boundary elements method
provide solutions for a large class of geometries, but are mesh
dependent in areas of stress concentration and time consuming.
Moreover, sensitivity analysis with respect to different parameters
will further increase the computational burden.

Classical closed-form solutions for infinite bodies containing
holes have been presented by Savin [28] based on the complex
potentials proposed previously by Muskeshishvilli [21]. This solu-
tion employs the theory of complex elasticity which has been a
powerful mathematical tool for many different problems such as
contact problem [14], slope stability [18] or crack problem [3].

Several papers [31,17,11,4] have proposed expressions for the
stress field ahead of a notch depending on two parameters: the
notch root radius q and the axial stress concentration factor Kt.
Indeed, they showed that in the vicinity of the notch tip, the stress
field distribution is more influenced by the notch root radius than
by the global geometry of the notch and is very similar for a variety
of notches when stresses are normalized by the stresses at the
notch tip.

Thus the stress distribution obtained by these solutions, when
considered away from the notch, is not dependent on the stress
concentration factor, which is incoherent with the assumptions
of the analysis [27]. Therefore these solutions are not accurate
enough [5] for a distance ahead of the notch tip larger than 3q in
the case of a sharp notch (Kt > 5) and q in the case of blunt notch
(Kt < 5).

Several papers [16,9,2] have proposed elaborate approximate
closed-form expressions for a unique solution applicable both for
blunt and sharp notches. Their solutions are valid for notched bars
and plates under tension and bending loading.
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The present work proposes a further extension of these solu-
tions in the form of an approximate stress field solution devoted
to tubes presenting an internal or an external notch under tension
and bending loadings. The application of this solution to a threaded
connection is presented in [6,7].

The paper is organized as follows: the next section presents a
short review of the solution proposed by Filippi and Lazzarin [8]
dedicated to notched bars. The third section is dedicated to the
extension of the preceding solution to tubular geometries with
an external or an internal notch and the determination of the dif-
ferent parameters introduced in the solution. The final section dis-
cusses the comparisons of the semi-analytical solution with the
finite element results for a variety of notch geometries and defines
the validity of the solution with regards to a dimensionless param-
eter n representing a ratio between notch depth and the tube
thickness.

2. Stress problem for notched tubes

In this section, we are interested in the formulation of an
approximate solution of the elastic stress field R in the vicinity
of a notched axi-symmetrically tube under tension and bending
loading.

The geometry of the tubes is depicted in Fig. 1. We shall con-
sider two systems of coordinates, the former is a global system
of coordinates {eR, eH, eZ} with the z-axis along the axis of the tube

and the latter is a local system of coordinates {ex, ey, ez} in the
neighborhood of the notch. The tube is defined by an internal
and an external radius, Ri and Re respectively. The notch has its
tip at a distance Ro from the axis of the tube and its depth p is equal
to

p ¼
Re � Ro for external notch
Ro � Ri for internal notch

�
: ð1Þ

The notch has a rounded V-shaped geometry with an opening
angle 2a and a root radius q.

Along the bisector of the notch, the stress field R has the follow-
ing matrix form for tension and bending loading in the global sys-
tem of coordinates {eR, eH, eZ}, due to the symmetry of the
problem, and to some simplifications regarding the order of mag-
nitude of the stress components with respect to the axial compo-
nent RZZ

R ¼
RRR 0 0
0 RHH 0
0 0 RZZ

2
64

3
75: ð2Þ

On the same bisector, we shall denote r the associated stress
field expressed in the local system of coordinates {ex, ey, ez}. In
our case, its components are defined by

r ¼
rx 0 0
0 ry 0
0 0 rz

2
64

3
75 ¼

RRR 0 0
0 RZZ 0
0 0 RHH

2
64

3
75: ð3Þ

One can note that the shear component rxy is equal to zero
everywhere along the notch ligament, i.e 0 > r � ro > Re � Ro, due
to the symmetry of the problem.

Recently, a set of closed-form equations valid for V-shaped
notched axi-symmetric bars, i.e Ri = 0, subjected to Mode I loadings
(tension and bending) has been proposed in [8].

The local elastic stress field r has been obtained with the use of
the Kolosoff–Mushkelishvili’s complex potential function [21] and
the conformal mapping introduced by Neuber [22]. This solution
has been obtained under plane stress or plane strain condition
with respect to the local coordinate system, which is verified for
sufficiently large R.

The solution in [8] for the stress field r along the notch bisector,
i.e. y = 0 or h = 0, of a cylindrical bar expressed in the local system
of coordinates {ex, ey, ez} (see Fig. 1) is

ry ¼
rmax

4 q� 1ð Þ þ qx1
gðrÞ 4ðq� 1Þf ðrÞk1�1 þ qx1

r
ro

� �l1�1
" #

; ð4Þ

rx ¼
rmax

g1 4ðq� 1Þ þ qx1½ � 4ðq� 1Þ r
ro

� �k1�1

þ qd1
r
ro

� �l1�1
" #

; ð5Þ

where rmax is the maximum stress in the y-direction and functions
f(r) and g(r) will be defined later. The other parameters q, ro, k1, l1,
x1, d1 and g1 involved in (4) and (5) are defined in Appendix A.

Nomenclature

r stress field associated to the local system of coordinates
R stress field associated to the global system of coordi-

nates
q root radius of the notch
a half-opening angle of the notch
Re, Ri and Ro external, internal and notch tip radii of the tube
p depth of the notch

l ligament length of the notch
e thickness of the tube
Kt

ZZ axial stress concentration factor for tension loading

Kf
ZZ axial stress concentration factor for bending loading

n dimensionless parameter characterizing the geometry
of the notched tube

eR

eZ
e

eR

eZ
e

Ri

Re

Ri

Re

Ro Ro

y

ro

2x

y

x
xy

p

r

Fig. 1. Geometry of tubular components with an internal (right) and external (left)
notch and geometry of the notch (center).
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The stress field defined by (4) and (5) is an approximate solu-
tion, in the sense that the free surface boundary condition is
satisfied only at the notch tip and on the rectilinear flanks of the
V-notch, where the boundary conditions were set according to
Williams [19].

Originally [8] the function f(r) in (4) was linear, expressed as: r
ro

.
This solution gives good results close to the neighborhood of the
notch tip but becomes less accurate far away from it. Thereby, in
order to obtain a better solution all along the notch bisector, the
function f(r) was modified in the form

f ðrÞ ¼ 1þ atan mðr � roÞ½ �
mro

; ð6Þ

where the parameter m will be defined later. This solution has
shown good agreements with respect to FEM results [8]. It is worth
noting that (6) matches the linear law r

ro
in the vicinity of the notch

tip.
The function g(r) expressed in (4) is related to the loading mode,

tension or bending, and is equal to

gðrÞ ¼
1� r�ro

j for bending
1 for tension

�
; ð7Þ

where j is the distance from the neutral axis to the notch tip, and is
equal to Ro.

At this stage, the solution is complete up to the determination
of the parameter m (see [8]) and to the determination of rmax.

In order to identify the best values of these two parameters, for
a given geometry, two additional relations are then needed. These
two values will then be identified by equating the theoretical axial
stress concentration factor KZZ, with the stress concentration Kt

computed with the finite element method, and by writing the glo-
bal equilibrium condition of the tube. As it will be shown later in
Section 5, the value of the parameter m varies only weakly with
the notch root radius. This result, equally reported in [8], permits
to perform the sensitivity studies without performing additional fi-
nite element analysis, and justifying the practical interest in the
present approach.

The results can be summarized by the following expressions:

RRR ¼
E

1� m2

duR

dR
þ m

uR

R

� �
þ RZZ

m
1� m

; ð8Þ

RHH ¼
E

1� m2

uR

R
þ m

duR

dR

� �
þ RZZ

m
1� m

; ð9Þ

where E and m are the Young’s modulus and the Poisson’s ratio,
respectively, whereas uR is the radial displacement. The first of
the previous equations provides the radial displacement by integra-
tion with an initial condition uR = 0 at R = 0 which is valid for bars
only. Then the distribution of the hoop stress, with respect to R, is
obtained by substituting the solution uR into the second equation.

3. Local formulation of the solution for notched tubes

In order to extend this solution to tubular geometries subjected
to tension and bending loadings, the stress component rx must sat-
isfy the free surface condition, i.e. rx = 0 at R = Ri and R = Re for an
internal and external notched tube, respectively.

As a consequence the function h(r) is added to (5) such that the
boundary condition is satisfied. Thus, the stress component rx

becomes

rx ¼
rmax

g1 4ðq� 1Þ þ qx1½ � 4ðq� 1Þ r
ro

� �k1�1
"

þqd1
r
ro

� �l1�1

� hðrÞC
#
; ð10Þ

where the function h(r) satisfies the two following conditions

hðroÞ ¼ 0 and hðro þ lÞ ¼ 1: ð11Þ

Moreover, the coefficient C in (10) and the ligament length l in
(11) are given by

C ¼ 4ðq� 1Þ 1þ l
ro

� �k1�1

þ qd1 1þ l
ro

� �l1�1

; ð12Þ

l ¼
Ro � Ri ext
Re � Ro int

�
: ð13Þ

Here ‘ext’ and ‘int’ simply denote the formula to use for an
external or an internal notch, respectively.

The simplest function satisfying (11) is the linear function, thus

hðrÞ ¼ r � ro

l
: ð14Þ

For the component ry, its expression is given by

ry ¼
rmax

4 q� 1ð Þ þ qx1
gðrÞ 4ðq� 1Þf ðrÞk1�1 þ qx1

r
ro

� �l1�1
" #

; ð15Þ

with the modified g function

gðrÞ ¼
1� r�ro

j ext
1þ r�ro

j int

(
bending

1 tension

8><
>: : ð16Þ

Therefore the axial RZZ and the radial RRR components of the
stress field R along the ligament are equal to

RZZ ¼
rmax

4ðq� 1Þ þ qx1
gðrÞ 4 q� 1ð Þf ðrÞk1�1 þ qx1

r
ro

� �l1�1
" #

; ð17Þ

RRR ¼
rmax

g1 4ðq�1Þþqx1½ � 4ðq�1Þ r
ro

� �k1�1

þqd1
r
ro

� �l1�1

�hðrÞC
" #

:

ð18Þ

Once again, the hoop stress can be determined with the help of
the constitutive Eq. (9). One can however remark that the initial
condition used for bars: uR = 0 for R = 0, has to be modified. For this
reason, we assume that, far away from the notch tip, the mechan-
ical fields are the same as for a tube without the notch. In other
words, we assume that RHH = 0 at R = Ri for the case of an external
notch and RHH = 0 at R = Re for the case of an internal notch. Solv-
ing for uR in (8) and (9) and using the boundary condition, one
obtains:

uRjR¼Ri
¼ � mRi

E
RZZ jR¼Ri

external; ð19Þ

uRjR¼Re
¼ � mRe

E
RZZ jR¼Re

internal: ð20Þ

Finally the hoop stress RHH is determined by introducing uR

and RZZ into (9).

4. Global formulation of the solution for notched tubes

At this stage, the solution is complete up to the determination
of the parameter m (see (6)) which belongs to the open range
[0, +1[ and depends on the notch geometry and the relative
dimensions of the tubular components. This parameter is obtained
numerically by equaling the theoretical axial stress concentration
factor KZZ with the stress concentration Kt computed with the finite
element method

M. Ferjani et al. / International Journal of Fatigue 33 (2011) 557–567 559
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Kt ¼ KZZ ¼
rmax

rnom
; ð21Þ

where rnom is the applied gross nominal stress and rmax is the max-
imal axial stress as depicted in Fig. 2. It is well known, that the pre-
cision of the numerical computed stress concentration is influenced
by the mesh density. A short discussion of this point will be pre-
sented in the next section and is illustrated in Fig. 4.

Invoking the global equilibrium condition for tension and bend-
ing loadings, one can obtain an equation which can be solved
numerically as a function of the parameter m.

The global equilibrium condition for tension loading takes the
following form

T ¼
R Ro

Ri RZZðRÞ2pRdR extR Re

Ro
RZZðRÞ2pRdR int

(
; ð22Þ

R ¼
Ro � r þ ro ext
Ro þ r � ro int

�
; ð23Þ

where T is the tension load linked to the gross nominal stress rnom

by

T ¼ p R2
e � R2

i

� �
rnom: ð24Þ

Substituting (17) into (22) and rearranging the obtained equa-
tion, one obtains the following relation for Kt

ZZ for tension loading

Kt
ZZ ¼

R2
e � R2

i

� �
4ðq� 1Þ þ qx1½ �

2ðAm þ BÞ ; ð25Þ

with

Am ¼ 4ðq� 1Þ
Z l

0
1þ atanðmxÞ

mro

� �k1�1

Ro � xð Þdx; ð26Þ

B ¼ qx1ro

l1
Ro 1þ l

ro

� �l1

� 1
� 	�

� ro

l1 þ 1
1þ l

ro

� �l1þ1

� l
ro

1þ l
ro

� �l1

� 1
� 	" #

; ð27Þ

where the signs + and � in (26) and (27) stand for an internal and
external notch, respectively.

For bending loading (see Fig. 3), the balance of angular moment
is employed after having specified which is the peak stress rmaxto
use in (8) and which is the distance jto introduce in (7). To carry
out the calculation, we assume that along a vertical strip dX, as de-
picted in Fig. 3, the axial stress component RZZ is given by (17) and
the peak stress rmax is only a function of X such that

rmaxðXÞ ¼ r0max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X

Ro

� �2
s

; ð28Þ

where r0max is the maximum axial stress at X = 0.
Regarding the strip dX, the parameter j is now defined as the

distance between the notch tip at X and the plan Y = 0 and, as for
the stress peak, we assume that j is equal to

j ¼ Ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X

Ro

� �2
s

: ð29Þ

Moreover, in the case of an internal notch, the stress component
RZZ is not defined in the region Re P X P Ro, therefore we assume
that, in this region, RZZ is equal to the axial stress of the same geo-
metrical tube without notch, thus

R�ZZ ¼
Y
j

rnom: ð30Þ

Therefore, under the preceding assumptions, the balance of
angular moment becomes

M
4
¼

R Ri
0

R ffiffiffiffiffiffiffiffiffiffi
R2

o�X2
pffiffiffiffiffiffiffiffiffiffi

R2
i �X2

p RZZY dY dX þ
R Ro

Ri

R ffiffiffiffiffiffiffiffiffiffi
R2

o�X2
p
0 RZZY dY dX

for an external notchR Ro

0

R ffiffiffiffiffiffiffiffiffiffi
R2

e�X2
pffiffiffiffiffiffiffiffiffiffi

R2
o�X2

p RZZY dY dX þ
R Re

Ro

R ffiffiffiffiffiffiffiffiffiffi
R2

e�X2
p
0 R�ZZY dY dX

for an internal

8>>>>>>><
>>>>>>>:

; ð31Þ

Fig. 2. Schematic view of the distribution of the axial stress component RZZ along
the ligament for tension loading.

Fig. 3. Schematic view of the distribution of the axial stress component RZZ along
the ligament for bending loading.
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Y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

o � X2
q

þ ro � r for an externalffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

o � X2
q

� ro þ r for an internal

8><
>: and for X 6 Ro;

ð32Þ

where M denotes the bending load that related to the maximal
gross nominal stress rnom by

M ¼ I
Re

rnom; ð33Þ

I ¼ p
4

R4
e � R4

i

� �
: ð34Þ

Substituting (17) into (31), one obtains for bending loading the
expression for the axial stress concentration factor Kf

ZZ

Kf
ZZ ¼ Ro

I
4Re
� G

� �
4ðq� 1Þ þ qx1

Cm
; ð35Þ

with

Cm ¼

R Ri
0

R ffiffiffiffiffiffiffiffiffiffi
R2

o�X2
pffiffiffiffiffiffiffiffiffiffi

R2
i �X2

p � þ
R Ro

Ri

R ffiffiffiffiffiffiffiffiffiffi
R2

o�X2
p
0 �

( )
GmðY ;XÞY2 dY dX ext

R Ro

0

R ffiffiffiffiffiffiffiffiffiffi
R2

e�X2
pffiffiffiffiffiffiffiffiffiffi

R2
o�X2

p GmðY;XÞY2 dY dX int

8>>><
>>>:

;

ð36Þ

G ¼
0 extR Re

Ro

R ffiffiffiffiffiffiffiffiffiffi
R2

e�X2
p
0 R�ZZY dY dX int

(
; ð37Þ

GmðY;XÞ ¼ 4ðq� 1Þ 1�
atan m Y �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

o � X2
q� �� 	

mro

8>><
>>:

9>>=
>>;

k1�1

þ qx1 1�
Y �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

o � X2
q

ro

0
@

1
A

l1�1

; ð38Þ

where the signs + and � in (38) stand respectively for an internal
and external notch.

5. Results and limitations of the solution for notched tubes

In this section, we shall compare the predictions of the solution
with FEM results along the notch ligament. If not mentioned, all
the results presented below are done for a notch geometry with
an opening angle 2aof 60� and a notch root radius q of 1 mm.

For accuracy purpose, a study of the mesh size has been per-
formed for tension and bending loading using the ABAQUS commer-
cial software [1]. For the tension case, 2D axi-symmetric model has
been used with linear four noded elements CAX4R and for the
bending case, 3D axi-symmetric model has been used with linear
eight-node elements C3D8R. Both models have been set up to ob-
tain a regular and smooth mesh in the neighborhood of the notch
tip.

The geometry of the mesh as well as the results are depicted in
Fig. 4. This figure presents the value of the axial concentration fac-
tor Kt with respect to the mesh size ratio �

q. To reach a comfortable
accuracy, the mesh size ratio has been chosen equal to 0.01 for ten-
sion loading and equal to 0.02 for bending loading. This choice is
also motivated by the limitation of the number of degrees of free-
dom created; about 3000 and 10000 elements respectively for ten-
sion and bending loading.

Figs. 5 and 6 illustrate the distribution of the stress components
RZZ, RRR and RHH along the notch ligament for the case of an
external and internal notch under tension and bending loadings.

Fig. 4. Mesh size sensitivity for an externally notched tube with 2a=60� and
q=1 mm.

Fig. 5. Stress field distribution along the ligament of an external notch.

M. Ferjani et al. / International Journal of Fatigue 33 (2011) 557–567 561



Author's personal copy

A good agreement is found between the FEM results (markers) and
the closed-form solution (line) for the axial stress component RZZ.
Concerning the radial stress component RRR, the semi-analytical
solution is more accurate in the neighborhood of the notch tip
and becomes less accurate for r > q; this error is principally due
to the choice of the linear function h(r) in (18). This mismatch
influences slightly the distribution of the hoop stress component
RHH except for the case of an internal notched tube under bending
(see Fig. 6).

A way to correct this mismatch is to choose another function
h(r). Instead of the initial linear function introduced in (14), we
propose the following hyperbolic function

hðrÞ ¼
tanh r�ro

q

� �
tanh l

q

� � : ð39Þ

However, let us remark that the form has been chosen without
any a priori information or optimization, and therefore we expect
that better functions can be found for this role.

In this case, an improvement is attained on the accuracy of the
hoop stress RHH, as for example depicted in Fig. 7. This compari-
son with FEM results has been obtained for the same notch

geometry as before in tension loading. The improvement is less
impressive in the case of bending loading.

Figs. 8 and 9 illustrate, for a variety of geometrical parameters a
and q, the distribution of the principal stress component RZZ along
the notch ligament for the case of an external and internal notch
under tension. Again good agreements are found between the
FEM results (markers) and the closed-form solution (line).

Let us now explore the limitation of the solution with respect to
the dimensions of the tube and the notch. This discussion is impor-
tant in the case of a tubular geometry when the ligament length l is
of the same order of magnitude as the radius of the notch q. In-
deed, the solution derived in the last sections has been obtained
under some assumptions with respect to the dimensions of the
tube [16], therefore the closed-form solution expressed here will
not necessarily be suitable for any type of geometry. This section is
therefore devoted to define the range of application of the solution.

As mentioned earlier, the parameter m will take a value be-
tween 0 and +1for a given set of notch geometry (q, a and p)
and tube dimension (Ri and Re) and therefore a given stress concen-
tration factor Kt. On this range, the axial stress concentration factor
KZZ defined by (25) for tension loading and (35) for bending loading
is continuously decreasing, leading to a maximum value for m = 0
and a minimum value for m = +1.

Fig. 6. Stress field distribution along the ligament of an internal notch.

(a)

(b)

Fig. 7. Distribution of the radial (a) and the hoop stress (b) components under
tensile loading in the case of an internal notch for different choices of h: linear see
Eq. (14) and the new nonlinear h, see Eq. (39).
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For this two limits, the function f(r) introduced in (4) takes the
following expressions

lim
m!0

f ðrÞ ¼ r
ro
; ð40Þ

lim
m!þ1

f ðrÞ ¼ 1: ð41Þ

Introducing this two limiting functions into (25), one can derive
analytically the two bounds of the axial stress concentration factor
Kt

ZZ in the case of tension loading

Kt;max
ZZ ¼

R2
e � R2

i

� �
4ðq� 1Þ þ qx1½ �

2ðAo þ BÞ ; ð42Þ

Kt;min
ZZ ¼

R2
e � R2

i

� �
4ðq� 1Þ þ qx1½ �

2ðA1 þ BÞ ; ð43Þ

where the upper fix max and min are respectively related to m = 0
and m =1. The coefficient B is given by (27) and the coefficients
Ao and A1 are given by

Ao ¼ 4ðq�1Þ ro Ro� roð Þ
1þ l

ro

� �k1
�1

k1
� r2

o

1þ l
ro

� �k1þ1
�1

k1þ1

2
64

3
75; ð44Þ

A1 ¼ 4 q� 1ð Þ Ro � roð Þl� r2
o

2
1þ l

ro

� �2

� 1

" #( )
: ð45Þ

For the case of bending loading, the bounds for the axial stress
concentration factor Kf

ZZ are obtained numerically

Kf ;max
ZZ ¼ I

4Re
� G

� �
4 q� 1ð Þ þ qx1

Co
; ð46Þ

Kf ;min
ZZ ¼ I

4Re
� G

� �
4 q� 1ð Þ þ qx1

C1
; ð47Þ

where the coefficients G, C1 and Co are given respectively by (36)
and (37).

In order to define the range of application of the solution, we
define a parameter n characterizing the geometry of the tube
which is equal to

n ¼ Ri

Re
� p

e
; ð48Þ

where p is the depth of the notch defined by (1) and e is the thick-
ness of the tube

e ¼ Re � Ri: ð49Þ

(a)

(b)

Fig. 8. Distribution of the axial stress component for different notch root radius
under tension loading and with a = 40� for (a) an externally notched tube (b) an
internally notched tube.

(a)

(b)

Fig. 9. Distribution of the axial stress component for different opening angle under
tension loading and with q = 1 mm for (a) an externally notched tube (b) an
internally notched tube.
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The parameter n is equal to zero for a notched bar (i.e. Ri = 0)
and tends to 1 for thin tubes with the thickness going to zero.
We can remark that this parameter n is not dependent on the
geometry of the notch as the notch root radius q and the half-
opening angle a and therefore the following results shall only be
applied to the notch geometry tested (q = 1 mm and a = 30o).

Thereby to define the range of application of the closed-form
solution, we have to find the value of the parameter n at which
the maximum axial stress concentration factor Kmax

ZZ becomes smal-
ler than the real axial stress concentration (computed with FEM).

Figs. 10 and 11 illustrate the range of validity of the closed-form
solution with respect to n. These results show the evolution of the
axial stress concentration factor Kt computed with FEM solution
(marked dashed lines) and the maximum axial stress concentra-
tion factor Kmax

ZZ (solid lines) obtained by (42) for tension loading
and (46) for bending loading. These results are obtained by varying
the parameter n for tubes presenting an internal and external notch
submitted to tension and bending loading and for three different
notch depths p (1 mm, 2 mm and 5 mm). To vary the parameter

n, all dimensions have been kept constant excepted the internal ra-
dius Ri for an external notch and the external radius Re for an inter-
nal notch.

The figures display the intersections between Kt and Kmax
ZZ repre-

sented with a bigger marker, and one remark that all the intersec-
tion lie on a small interval [0.21, 0.27]. Therefore we conclude that
the closed-form solution is only valid for a notched tubes with a
parameter n smaller than a critical value n*. The fact that n higher
than the critical value n* express the fact that the notch depth be-
comes large with respect to the tube thickness. This can be inter-
preted by saying that the solution in [8] provided in Eqs. (4) and
(5) cannot be applied for this configuration, as the free internal sur-
face of the tube is too close to the notch tip.

Moreover, as mentioned before this critical value n* should de-
pend on the notch geometry and we have found that for q = 1 mm
and a = 30�, the critical value is equal to 0.086.

An alternative to the numerical procedure to determine the
parameter m has been developed based on an empirically function
depending of the notch root radius for notched bar geometry.

Fig. 10. Limiting values of the axial stress concentration factor Kt computed by FEM
(marked dashed lines) and the maximum axial stress concentration factor Kmax

ZZ

(solid lines) predicted with the semi-analytical solution for different tubular
geometries for an external notch.

Fig. 11. Limiting values of the axial stress concentration factor Kt computed by FEM
(marked dashed lines) and the maximum axial stress concentration factor Kmax

ZZ

(solid lines) predicted with the semi-analytical solution for different tubular
geometries for an internal notch.
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Investigation has been performed to determine the influence of the
notch root radius q, the half-opening angle a and the parameter n
on the parameter m for notched tube geometry. The results are
presented in Figs. 12 and 13 for which the computations have been
done with n equal to 0.1. We remark in Fig. 12a that the notch root
radius q does not influences the parameter m both for an external
and an internal notched tube, but has a greater influence on the
opening angle a and the parameter n.

6. Conclusions

We proposed a semi-analytical stress solution suitable for
notched axi-symmetrically tube submitted to tension and bending
loading. This closed-form solution is a generalization of the stress

solution [8] devoted to notched axi-symmetric bar. The proposed
semi-analytical solution is based on an approximate elastic stress
solution where the local balance condition is always satisfied by
the use of a biharmonic stress function but boundary conditions
are not satisfied except at specific points.

The solution has been adapted to tubular geometries by adding
a supplementary term in the expression of the radial stress compo-
nents RRR. The free stress boundary condition at the inner or the
outer radius could therefore be respected for externally or inter-
nally notched tubes.

The proposed semi-analytical solution has shown good agree-
ments with respect to finite element solution in the case of an
external notched tube. The match is less accurate with an internal
notch on the radial and the circumferential stress components.
This error has been reduced by changing the linear term in the
expression of the radial stress component with a hyperbolic func-
tion as example.

Finally a study of the validity of the semi-analytical solution
regarding to the dimension of the notched tube has been per-
formed. This study has highlighted the fact that the solution is
not capable to model too high stress concentration factors. A
numerical study has shown that it is possible to define a parameter
n which characterizes the geometry of the notched tube and the
solution is applicable for only notched tube presenting a n param-
eter smaller than n* which can be considered as independent on the
notch depth but only on the notch opening angle and the notch
root radius.

Moreover we have shown that the m parameter introduced in
(6) is highly dependent on the half-opening angle a and the n
parameter and slightly dependent on the notch root radius q.

The application of this solution for the design of threaded com-
ponents is presented in a companion paper [7].

Appendix A

Recently, a set of closed-form equations valid for V-shaped
notched axi-symmetric bar under Modes I and II loading has been
proposed in [8]. The stress field has been obtained by the use of the
Kolosoff–Mushkelishvili’s complex potential function [21] and the
following conformal mapping introduced by Neuber [22]

z ¼ xþ iy ¼ ðuþ ivÞq ¼ nq; ð50Þ

where z is the complex representation of the cartesian coordinates
{x, y} and {u, v} is the auxiliary system of curvilinear coordinates
(see Fig. 14).

The parameter q in (50) is linked to the opening angle 2a by the
following relation

(a)

(b)

Fig. 12. Evolution of the parameter m (a) for various notch radius q with a = 40�
and (b) for various notch opening angle a with q = 1 mm.
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Fig. 13. Evolution of the parameter m for various n with a = 30�.
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q ¼ 2 1� a
p

� �
: ð51Þ

The origin of the cartesian coordinate system is located at a dis-
tance rofrom the tip of the notch, where ro depends on the notch
root radius q and the opening angle 2a according to

ro ¼ q
q� 1

q
¼ q

p� 2a
2p� 2a

: ð52Þ

For Mode I loading, the stress field along the notch bisector, i.e.
h = 0, is

rhjh¼0 ¼ ry ¼
rmax

4ðq� 1Þ þ qx1
4ðq� 1Þ 1þ atan mðr � roÞ½ �

mro

� �k1�1
"

þqx1
r
ro

� �l1�1
#
; ð53Þ

rrjh¼0 ¼ rx ¼
rmax

g1 4ðq� 1Þ þ qx1½ � 4ðq� 1Þ r
ro

� �k1�1
"

þqd1
r
ro

� �l1�1
#
; ð54Þ

where the parameters introduced in (53) and (54) are equal to

x1 ¼
vd1
ð1þ l1Þ þ vc1

1þ k1 þ vb1
ð1� k1Þ

; ð55Þ

g1 ¼
1þ k1 þ vb1

ð1� k1Þ
3� k1 � vb1

ð1� k1Þ
; ð56Þ

d1 ¼
vd1
ð3� l1Þ � vc1

3� k1 � vb1
ð1� k1Þ

; ð57Þ

vb1
¼ sin ð1� k1Þqp=2½ �

sin ð1þ k1Þqp=2½ � ; ð58Þ

vc1
¼ ð1� l1Þ

2 � 1þ l1

q

� 	
3� k1 � vb1

1� k1ð Þ
h i

� ð3� l1Þe1; ð59Þ

vd1
¼

1� q 1þ l1

� �
q

� 	
3� k1 � vb1

1� k1ð Þ
h i

� e1; ð60Þ

e1 ¼ 1� k1ð Þ2 þ vb1
ð1� k2

1Þ �
1þ k1 � vb1

ð1� k1Þ
q

; ð61Þ

and the constants k1 and l1 are such that they satisfy the following
equations

sinðk1qpÞ þ k1 sin qpð Þ ¼ 0; ð62Þ

1� qð1þ l1Þ
q

3� k1 � vb1
ð1� k1Þ

h i
� e1

� �
ð1þ l1Þe1

� cos ð1� l1Þq
p
2

h i
þ ð1� l1Þ

2 � 1þ l1

q

� 	
3� k1 � vb1

ð1� k1Þ
h i

� ð3� l1Þe1

� �

� cos ð1þ l1Þq
p
2

h i
¼ 0:

ð63Þ

Table 1 provides useful values of the different parameters for vari-
ous opening angle 2a.
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