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Linear viscoelastic material behavior is often modeled using a generalized Maxwell model. The material
parameters, i.e. relaxation times and elastic moduli, of the Maxwell elements are determined from either
a relaxation or a Dynamical Mechanical Analysis (DMA) experiments. The underlying mathematical prob-
lem is known to be ill-posed, which means that uniqueness of the identification is not assured and that
small errors in the initial data will conduct to high discrepancies in the identified parameters. The stan-
dard technique to remove the ill-posedness is to chose a priori a series of relaxation times and to identify
only the moduli. The aim of this paper is to propose two techniques to identify an optimal series of relax-
ation times. In the case of the relaxation experiment relaxation times will be optimized from the numer-
ical integration of the measured relaxation spectrum. In the case of the DMA experiments we show that
mathematical results obtained by Krein and Nudelmann can be used to determine the complete series of
relaxation times. The methods are illustrated by identification examples using both artificial and exper-
imental data. The results show that the methods provide a good match of the identified models in term of
relaxation or complex moduli.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

A large number of materials including rubber, polymers, com-
posites, concrete, etc. have a viscoelastic mechanical behavior
which is often represented using a generalized Maxwell model
(Findley et al., 1976). The model presents several merits: it is sim-
ple, robust and can be identified from relaxation or Dynamical
Mechanical Analysis (DMA) experiments. Moreover it can cover a
large range of characteristic times in both experiments.
Application of the generalized Maxwell model cover different
classes of polymers amorphous or cross-linked polymers
(Brinson, 2008), polydisperse, high density polyethylene (Otegui
et al., 2013) etc. Other applications cover concrete materials as in
Park and Kim (2001).

Further extension based on the Linear generalized Maxwell
model are cover nonlinear viscoelastic material behaviors, where
different parameters like the elastic moduli or the relaxation times
will further depend on different parameters. Let us cite, the curing
dependent relaxation moduli proposed in Zarrelli et al. for epoxy
materials or a prestrain dependent complex modulus proposed
for propellant in Thorin et al. (2013,).

The identification of the relaxation spectrum of a viscoelastic
system, corresponds to the determination of the relaxation kernel
in an integral equation and is denoted as a Fredholm integral equa-
tion of the first kind. The problem has attracted a lot of attentions
during the last decades due to its inherent difficulties. It is mathe-
matically ill-posed, implying that the identification of the kernel is
not uniquely assured and that small errors in the initial data will
conduct to high discrepancies in the identified kernel. Within the
recent mathematical literature, we can cite the work of Grasselli
(1994), Janno and Von Wolfersdorf (1997), Von Wolfersdorf
(1993), Cavaterra and Grasselli (1997), which recovered the relax-
ation spectrum by reducing the problem to a nonlinear Volterra
integral equation using a Fourier method to solve the direct prob-
lem and by applying the contraction principle. Further results rev-
eled that the problem can also be solved in a heterogeneous
medium, as in Lorenzi (1999), Lorenzi and Romanov (2006) or
recently de Buhanand and Osses (2010) meaning that a spatial
material heterogeneity can also be recovered if specific conditions
are satisfied.
. Solids
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In order to eliminate the ill-posedness of the identification
problem, a standard technique consists of defining a priori the
characteristic times for the Prony’s series and pursuing the identi-
fication only for the elastic moduli of the different elements. This
technique is described for example in Honerkamp (1989),
Honerkamp and Weese (1990) for the DMA experiments, where
the identification is performed on the complex moduli of the mate-
rial. A recent application example is given in Diani et al. (2012),
where a generalized Maxwell model is identified to describe the
viscoelastic behavior of shape memory polymers. For the relax-
ation experiment a dual method is proposed in Baumgaertel and
Winter (1992), Gerlach and Matzenmiller (2005) where the relax-
ation modulus is identified. Other techniques are based on differ-
ent numerical schemes to tackle this problem, as for example the
combination of Laplace transform and Padé approximants reported
in Carrot and Verney (1996), or the cumulative relaxation spec-
trum proposed in Xiao et al. (2013).

The aim of this paper is to improve the existing techniques by
proposing a novel way to determine a series of characteristic times.
In the case of a DMA experiment, the improvement is based on a
mathematical result given by Krein and Nudelman (1998), which
permits to identify the relaxation times as the zeros of two com-
plex functions constructed from the measured data. This problem
setting does not eliminate the ill-posedness of the initial problem.
Two algorithmic matrices have to be positive definite in order to
numerically solve the problem and this is realized through a regu-
larization technique. However this imposes more natural restric-
tions in the problem when compared with an artificial set of
characteristic times. In the case of the relaxation experiments,
the idea is to optimize the a priori set of relaxation time by impos-
ing a closer representation of the relaxation function by reanalyz-
ing the Riemann integration process. Results for both experiments
provide a smaller number of branches in the generalized Maxwell
model than traditional methods and keep the quality of the
representation.

The paper starts with an overview of the viscoelastic general-
ized Maxwell model where notations and general concepts are
introduced, as the continuous spectrum or the discrete Prony’s ser-
ies. The third section presents the standard identification tech-
nique of parameters from DMA experiments as presented by
Honerkamp (1989), Honerkamp and Weese (1990) and the
theoretical results of Krein and Nudelman (1998) as well as the
proposed identification algorithm. The discussion continues with
the identification method of parameters from relaxation test as
proposed in Baumgaertel and Winter (1992), Gerlach and
Matzenmiller (2005) and the proposed optimal identification of
relaxation times. The two methods are illustrated in the last chap-
ter by a series of examples: first using artificial data, which also
permits to investigate the influence of the noise and second using
experimental data from literature and measurements.
Fig. 1. A schematic representation of the generalized Maxwell model as a parallel
association of n Maxwell units, i.e. linear spring and damper ðEi; siÞ and a linear
spring of stiffness E0.
2. Viscoelasticity and Prony’s series

Let us start by recalling some concepts in linear viscoelasticity
in order to define the notations and the basic equations used in this
study.

The viscoelastic constitutive behavior can be represented in the
time domain, according to Markovitz and Hershel (1977), by relat-
ing histories of stresses, r, and strains, e, through the integral
equation:

rðtÞ ¼
Z t

�1
Eðt � sÞ deðsÞ

ds
ds ð1Þ

where E denotes the relaxation kernel.
Please cite this article in press as: Jalocha, D., et al. Revisiting the identificatio
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The dual representation of constitutive equation in the fre-
quency domain, relates the Fourier transform of stress and strains,
denoted as r� and e� respectively, by a linear equation:

r�ðxÞ ¼ E�ðxÞe�ðxÞ ð2Þ

E�ðxÞ is the complex modulus depending of the frequency x and
obtain through the same Fourier transform as stresses or strains.

The two equations in the time domain or frequency domain, are
equivalent and can be obtained the a direct or inverse Fourier
Transform denoted with a �.

The main constitutive unknown is the relaxation spectrum HðsÞ
(Findley et al., 1976) which is related to the relaxation modulus
EðtÞ by:

EðtÞ ¼ E0 þ
Z 1

�1
HðsÞe�t

sd lnðsÞ ð3Þ

and to the dynamical modulus E�ðxÞ ¼ E0ðxÞ þ iE00ðxÞ by:

E0ðxÞ ¼ E0 þ
Z 1

�1
HðsÞ x2s2

1þx2s2 d lnðsÞ EPrimeðxÞ

¼
Z 1

�1
HðsÞ xs

1þx2s2 d lnðsÞ ð4Þ

For practical reasons it is convenient to use a model, where the
continuous spectrum of relaxation HðsÞ is replaced with a finite

spectrum ĤðsÞ (Eq. (5)). This later is interpreted as simple rheolog-
ical elements, springs and dampers, and is denoted generalized
Maxwell model (see Fig. 1). It mathematical description is the
finite Prony’s series ðsi; EiÞ and the spectrum becomes:

ĤðsÞ ¼
Xn

i¼1

Ei d 1� s
si

� �
ð5Þ

where d is the Dirac function. The relaxation time si associated to
the element i is related to the characteristic time of the
spring-damper element, and is defined as the ratio of the viscosity
over the elastic moduli, i.e. si ¼ gi

Ei
.

This representation is often used in finite element models, see
Simo and Hughes (2008) for the time integration within a finite
element code.

In the discrete case of Prony series, the relaxation modulus EðtÞ
is represented as:

EðtÞ ¼ E0 þ
Xn

i¼1

Ei e�
t
si ð6Þ

where E0 represents the stiffness of the model at large times and n
denotes the number of branches of the generalized Maxwell model.
In the frequency domain, the dynamical modulus E�ðxÞ becomes:

E0ðxÞ ¼ E0 þ
Xn

i¼1

Ei x2s2
i

1þx2s2
i

E00ðxÞ ¼
Xn

i¼1

Ei xsi

1þx2s2
i

ð7Þ

Let us now consider that mechanical experiments such as relax-
ation test or cyclic loading test using a Dynamical Mechanical
Analyzer (DMA) provide a data series representing a continuous
n of generalized Maxwell models from experimental results. Int. J. Solids
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spectrum of relaxation times. The practical question is that of the
identification of an optimal discrete model from this data. This
question is essentially the identification problem of the general-
ized Maxwell model, i.e. determining the finite Prony’s series
fðsi; EiÞ; i ¼ 1;ng from the measured data.

From a mathematical point of view, it corresponds to the iden-
tification of the kernel of an integral Fredholm equation and it is
well known that these identification problems are ill-posed
(Lavrentiev, 1967), more precisely uniqueness of solutions is not
assured and the identification is instable, i.e. a small errors in the
data as generate by noise will develop a large error into the iden-
tified output (Hansen, 1992).
3. DMA experiment

The loading during DMA experiments is a sinusoidal strain
e ¼ e0 sinðxtÞ, which is associated to the real part of the complex
strain e� ¼ e0 ei xt . After a short transient period a stable strain–
stress loop occurs and the stress response can equally be expressed
in a sinusoidal form, r ¼ r0 sinðxt þ dÞ, associated to the real part
complex stress r� ¼ r0 eiðxtþdÞ. For a given frequency x, the com-
plex dynamical modulus is defined as

E�ðxÞ ¼ r�

e�
¼ E0ðxÞ þ iE00ðxÞ

If the measurement is repeated for m different frequencies
xi; i ¼ 1;m, the preceding procedure will provide data set
ðxj; E

0
jðxjÞ; E00j ðxjÞÞ for 1 6 j 6 m.

3.1. Existing identification procedure: the HW method

Different identification methods for the material parameters of
the generalized Maxwell model have been proposed in the past,
see for example the general discussion in Gerlach and
Matzenmiller (2005).

The method discussed next is a development based on the
method proposed by Honerkamp (1989) and Honerkamp and
Weese (1990), denoted here as the HW method.

Let us consider the experimental data set formed by m triplets
(xj; E

0
j; E
00
j ), with j ¼ 1; m. The problem is to identify a correspond-

ing Prony’s series, defined by 2n parameters (Ei; si), with i ¼ 1;n,
of a generalized Maxwell model.

The HW method can be resumed in the following steps:

� Step 1: Chose arbitrarily the number of n elements and the corre-
sponding values of the relaxation time of each element si.
This is a regularization step it as it eliminates one of the major
unknowns. It further transforms (7) into a linear equation for
the unknown parameters Ei defined by:
Ple
Str
E0 ¼ E0 þ AE and E00 ¼ BE ð8Þ

where: E0; E00; E0; E are the vectors of the different moduli
respectively. The matrix A and B are defined as:

A ¼ aij
� �

aji ¼
x2

j s2
i

1þx2
j s2

i

and

B ¼ bij
� �

bji ¼
xjsi

1þx2
j s2

i

� Step 2: Solve (8) in a least square sense
The vector of moduli E is realizes the following least squares
minima:
ase cite this article in press as: Jalocha, D., et al. Revisiting the identificatio
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E ¼ ArgMin
d

1
2
kðE0 � E0Þ � Adk2 and=or

E ¼ ArgMin
d

1
2
kE00 � Bdk2 ð9Þ

The solution is obtained using the pseudo-inverse or the Moore–
Penrose inverse matrix, denoted by + (see for details for example
Press et al.) and the solution is written as:

E ¼ AþðE0 � E0Þ or E ¼ BþE00 ð10Þ

More precisely, Aþ ¼ UAR�1
A VA, where A ¼ VARAUT

A is the singu-
lar value decomposition of the matrix A. As the preceding linear
systems can still be ill-posed one can use different regularization
techniques to stabilize the solution of such a system, see dis-
cussed in Hansen (1992).

3.2. Proposed procedure: the KN + HW method

The method proposed next permits to replace the arbitrary
choice of the relaxation times with an exact computation of the
series of relaxation times. This novelty eliminates the first step of
the HW method, where the relaxation times are generally imposed
as a linear series on the logarithmic scale.

The technique discussed is based on the mathematical result in
complex analysis obtained by Krein and Nudelman (KN) and pre-
sented in Krein and Nudelman (1998). The modified method will
be further denoted as KN + HW method.

The Krein and Nudelamn result has recently been applied for
the identification of a viscoelastic materials from measurements
in a split Hopkinson bar experiment (Collet et al., 2013).

In order to introduce the technique, we shall first present a ser-
ies of mathematical notations and results. The Nevanlinna Pick
interpolation problem (see for example Byrnes and Lindquist
(2000)) consists in finding a complex function F : C�!C interpolat-
ing the data pairs ðzk; ckÞk¼1;m, i.e.:

FðzkÞ ¼ ck k ¼ 1;m ð11Þ

Moreover, a function FðzÞ will be denoted as a S-function if:

FðzÞ ¼ cþ
Z 1

0

drðtÞ
t � z

ð12Þ

where 0 6 c and 0 6 drðtÞ. The result of Krein and Nudelman (see
Krein and Nudelman (1998) Section 4) states that if
zk 2 Cþ; k ¼ 1;m, then the interpolation problem has a solution in
the class of S-functions if and only if the quadratic forms defined
by the matrices:

M1
kj ¼

cj � ck

zj � zk
M2

kl ¼
zjcj � zkck

zj � zk
ð13Þ

are positive definite, i.e.:

0 6 f M1 f and 0 6 f M2 f 8f 2 C ð14Þ

and that the problem has a unique solution if at least one of the two
forms degenerates.

Let us show next that the viscoelastic identification problem
can be transformed in the structure defined by the Pick–
Nevalinna interpolation problem in the class of S-function.

As a first remark, let us observe that the complex modulus of
the viscoelastic problem is the conformal transform of an
S-function. Starting from Eq. (4), it can be expressed as:

E�ðxÞ ¼ E0 þ
Z 1

0
HðsÞ ix s

1þ ix s
ds ð15Þ
n of generalized Maxwell models from experimental results. Int. J. Solids
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After the change of variable s ¼ 1
s, the complex modulus is rewritten

as a function of the reduced spectrum hðsÞ ¼ H 1
sð Þ

s as:

E�ðxÞ ¼ E0 þ
Z 1

0

hðsÞ
sþ ix

ds ð16Þ

Considering the new following change of variable:

pðzÞ ¼ E�ðizÞ
z

ð17Þ

Eq. (16) becomes:

pðzÞ ¼
Z 1

0

gðsÞ
s� z

ds ð18Þ

with:

gðsÞ ¼ E0 þ
Z 1

0

hðuÞ
u

du
� �

dðsÞ þ hðsÞ
s

ð19Þ

This also shows that the function pðzÞ of (18) is a S-function.
As a second remark, let us analyze in the particular case of a

generalized Maxwell model the degeneracy of the quadratic forms
defined by M1 and M2, see Eq. (13). Starting from (17), one can
show that both forms can be expressed as:

M1
kl ¼ i

E�k � E�l
xk þxl

¼
Z 1

0
hðsÞ ds
ðs� ixkÞðsþ ixlÞ

ð20Þ

and

M2
kl ¼

E�k
xk
þ E�l

xl

xk þxl
¼ E�ð0Þ

xkxl

Z 1

0

hðsÞ
s

ds
ðs� ixkÞðsþ ixlÞ

ð21Þ

where E�k ¼ E�ðxkÞ for k ¼ 1; m,
Let us further denote by v and w the eigenvectors of the kernels

of the matrices M1 and M2, respectively. They are associated with
the 0 eigenvalue which implies that:

v �M1 � v ¼ 0

Taking into account Eq. (20), the last equation also writes:

Z 1

0
hðsÞ

Xm

k¼1

vk

ðs� ixkÞ

�����
�����

2
0
@

1
Ads ¼ 0 ð22Þ

In the case of a generalized Maxwell model, hðsÞ ¼
P

idðs� siÞ and
the equality (22) is verified only if the points ðsiÞi¼1;n are the zeros
of the rational function:

f 1ðsÞ ¼
Xm

k¼1

vk

ðs� ixkÞ
ð23Þ

A similar reasoning on the matrix M2 implies that the points ðsiÞi¼1;n

are also the zeros of a second rational function:

f 2ðsÞ ¼
Xm

k¼1

wk

ðs� ixkÞ
ð24Þ

The relaxation times are therefore obtained as si ¼ 1
si
, the

inverse values of the common zeros of the functions f 1 and f 2.
Finally, the KN + HW method is summarized as follows:

� Step 1: Build the two complex matrices M1 and M2 defined by
their components:
Please
Struct
M1
kl ¼ i

E�k � E�l
xk þxl

M2
kl ¼

E�k
xk
þ E�l

xl

xk þxl
ð25Þ
cite this article in press as: Jalocha, D., et al. Revisiting the identificatio
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where E�k ¼ E0k þ iE00k with k; l ¼ 1; m and E�k the conjugate com-
plex number of E�k.

� Step 2: Check the positive definition of matrices M1ðE�;xÞ and

M2ðE�;xÞ.
If the generalized Maxwell model is accepted to represent the
measurements, noise is one of the reason for the failure of pos-
itive definiteness. In this case we can filter the data and obtain
corrected positive defined matrices. The filtering proposed here
is different from the correction in Collet et al. (2013). According
to Gu et al. (1993) and Greene and Krantz (1997), M1 and M2 are
positive semi definite matrices if E� is holomorphic. A possible
correction is therefore given by the correction obtained by the
least square fit of a holomorphic function, for example of a
rational polynomial P, to the data E�k. Matrices M1 and M2 are
then build after using the corrected data PðxkÞ and not the mea-
sured data E�k.
� Step 3: Compute the v and w the eigenvectors spanning the kernel

of M1 M2, respectively and the two complex-valued functions f 1

and f 2:
f 1ðsÞ ¼
Xm

j¼1

v j

sþ ixj
f 2ðsÞ ¼

Xm

j¼1

wj

sþ ixj
ð26Þ

� Step 4: Find numerically the common real positive zeros si of f 1

and f 2.
The number of solutions will define the number of elements
in the generalized Maxwell model and the values of the
characteristic times are:

si ¼
1
si

ð27Þ

� Step 5: Compute the values of the moduli, by using the HW
inverse identification described before.

4. Relaxation experiments

The loading during a relaxation experiment, consist in impose a
deformation step to the material sample: eðtÞ ¼ e0 HeðtÞ, where
HeðtÞ denotes the Heaviside function, and record the continuously
decreasing stress history rðtÞ. The relaxation modulus is defined as

EðtÞ ¼ rðtÞ
e0

As a consequence, the experimental data representing the continu-
ous relaxation spectrum is a set of m time-modulus pairs: ðtj; EjðtÞÞ
with j ¼ 1; m.

4.1. Existing procedure: the B method

The method developed in this section to identify the general-
ized Maxwell model from the continuous relaxation time spectrum
is based on the standard method proposed and described by
Baumgaertel in Baumgaertel and Winter (1992). It will be denoted
here for simplicity as B method.

Let us recall that the evolution of the relaxation modulus is a
function of time and can be modeled by the following expression
(see for example Smith (1971) for further details):

EðtÞ ¼ E0 þ
Eg � E0

1þ t
t0

� �b ð28Þ

where E0 and Eg denote the value of the relaxation modulus at long
and short times respectively. t0 and b are parameters determined by
fitting the measured data: ðtj; EjðtÞÞ.
n of generalized Maxwell models from experimental results. Int. J. Solids
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Fig. 2. Example of continuous relaxation time spectrum HðsÞ and a staircase
function SðsÞ. Computation principle of si .

Table 1
Generalized Maxwell model used to generate artificial data.

si ðsÞ 0.05 0.2 2 10
Ei ðPaÞ 400 300 150 8
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Using the change of variable f ðzÞ ¼ H 1
zð Þ

z , Eq. (3) becomes:

EðtÞ � E0 ¼
Z 1

�1
HðsÞ e�

t
sd lnðsÞ ¼

Z 1

0
f ðzÞe�tzdz ð29Þ

Eq. (29) further implies that the relaxation modulus is the Laplace
transform of the function f ðzÞ (see for example Widder (1946)):

EðtÞ � E0 ¼ Lðf ðzÞÞ ð30Þ

The relaxation time spectrum is obtained as the inverse Laplace
transform of the expressions in Eq. (28):

HðsÞ ¼ ðEg � E0Þ
CðbÞ

s
t0

� ��b

e�
t0
s ð31Þ

With CðbÞ the Gamma function of b.
The shape of the relaxation time spectrum is now a concave

function with a peak Hmax reaching at its maximum in smax ¼ t0
b ,

i.e. HðsmaxÞ ¼ Hmax.
The question defined next is the identification of the discrete

generalized Maxwell model associated with this relaxation spec-

trum. The discrete relaxation spectrum ĤðsÞ corresponds to a stair-
case function and represents an approximation of the continuous
spectrum HðsÞ, see Eq. (5). As in the frequency domain, the stan-
dard practice is to chose a priori the set of time instants si placed
at equal distance on the logarithmic scale, see Baumgaertel and
Winter (1992).

Let us note sþi ¼
ffiffiffiffiffiffiffiffiffiffiffiffisisiþ1
p

and s�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
sisi�1
p

, the geometric aver-
age of the intervals ðsiþ1; siÞ and ðsi; si�1Þ on the logarithm scale,
respectively. The direct combination of Eqs. (29) and (6) under

the assumption of a constant function of value HðsiÞ e�
t
si over each

interval (s�i ; sþi ), conducts after some simple calculations to the
expression:

Eie
� t

si ¼
Z sþ

i

s�
i

HðsÞe�t
s d lnðsÞ � HðsiÞ e�

t
si ln

ffiffiffiffiffiffiffiffi
siþ1

si�1

r� �
ð32Þ

The identification procedure is now reduced to the determination of

the values of the moduli Ei ¼ HðsiÞ lnðriÞ, where ri ¼
ffiffiffiffiffiffi
siþ1
si�1

q
.

4.2. Proposed procedure: the R method

The logarithm equidistant distribution of relaxation times pro-
posed before does not necessary provide the most accurate approx-
imation of the relaxation spectrum. The alternative method
proposed here and denoted next as the R method will directly opti-
mize the distance between the discrete and the continuous relax-

ation spectrum. The discrete relaxation spectrum ĤðsÞ becomes a
staircase function of variable width. For a general discussion of
similar methods, the approximation of functions minimizing inte-
gral norms is presented for example in Kurtz et al. (2004).

Let us now define the approximate support of the relaxation
spectrum defined as the interval on the time axis where it is
non-zero. More precisely, the support is defined in terms of the
maximal value of the spectrum, as the interval where
HðsÞP c1Hmax. The c1 is an arbitrary parameter and was chosen
in the range 0:001 6 c1 6 0:05. The support will be denoted as
ðsc1; sc2Þ.

The staircase function SðsÞ, representing the generalized
Maxwell model with n elements (see Fig. 2) is defined as:

SðsÞ ¼
Xn

i¼1

HðsiÞUðti�1 ;tiÞðsÞ ð33Þ

where si ¼ ti�1þti
2 and the unit box function is defined as
Please cite this article in press as: Jalocha, D., et al. Revisiting the identificatio
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Uðti�1; tiÞ ¼
1 if ti�1 6 s 6 ti

0 otherwise




The closed-form expression of HðsÞ, given in Eq. (31), permits to
compute the closed-form expression of the integral of the contin-
uous relaxation spectrum. Moreover, let us denote R, the residual
function measuring the relative distance between HðsÞ and SðsÞ:

R ¼

R sc2
sc1

HðsÞ � SðsÞds
��� ���

R sc2
sc1

HðsÞds
��� ��� ð34Þ

The optimal finite distribution of relaxation times in the support of
the spectrum is now obtained for a fixed number of elements n by
minimizing the residual R. The time instants ðtiÞ; i ¼ 1; nþ 1,
defining the partition of the support in n elements with t0 ¼ sc1

and tn ¼ sc2, are related to the relaxation times by si ¼ ti�1þti
2 with

i ¼ 1; n. A schematic representation of the continuous spectrum
and the staircase approximation is displayed in Fig. 2.

The optimization procedure has been programmed using stan-
dard Mathematica commands (Wolfram Research, 2014) with a
required precision of 1% on the position of the partition points.
5. Application to artificial data

As a first application we shall apply the preceding methods to
the identification of a Maxwell model using artificial data, obtained
through numerical simulation of the experiments from a prede-
fined generalized Maxwell model. This step permits to asses the
robustness of the methods and investigate the influence of the arti-
ficial noise on the accuracy of the identification.

Let us now examine a viscoelastic behavior generated with a
four elements generalized Maxwell model (n ¼ 4) defined by the
values of relaxation times and elastic moduli given in Table 1.
Modulus value at infinite time is taken equal to zero (E0 ¼ 0).
n of generalized Maxwell models from experimental results. Int. J. Solids
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Table 2
The coefficients of the rational polynomial P used in the data correction.

ai 8.3 157.5 290.2 419.9 6.9
bi �3:8 71.8 1367.8 8506.6 �374:5
ci 0.2 0.3 22.2 410.2 2866.8
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The relaxation modulus and the complex modulus are artifi-
cially generated by direct computation using Eq. (6) and perturbed
by a white noise of 5% or 10%. The perturbed data in the case of 5%
noise are displayed in Fig. 3.

5.1. Parameter identification using the complex modulus

Let us first identify the model from the artificial complex mod-
ulus and compare the results obtained from the HW and KN + HW
methods.

As stated in the presentation of the KN + HW method, the key
point of the identification algorithm is the positive definition of
the two matrices M1 and M2 and the necessary correction of the
data.

The positive definiteness of the matrixes is improved after
replacing the initial noisy data ðxi; E

0
i; E
00
i Þ with ‘‘corrected’’ data

ðxi; E
0c
i ; E

00c
i Þ obtained after fitting with a rational polynomial P

defined as:

E0ci þ iE00ci ¼
X5

i¼1

ai x2
i þ i bi xi

ci þx2
i

ð35Þ

The values of the coefficients of P obtained from the least square fit-
ting procedure are presented in Table 2.

In order to illustrate the effect of the ‘‘correction’’ procedure on
the positive definition of the matrices M1 and M2 we have dis-
played the evolution of the eigenvalues on Fig. 4. The plot displays
the eigenvalues with abscissa the number of the eigenvalue and
the logarithm of its norm as ordinate. The color code display blue
and red for positive and negative eigenvalue respectively. The
example show that the correction process does not solve the prob-
lem of the positive definition of the matrices as negative eigen-
value are still present after the correction, however one can
remark that the first negative eigenvalue at now at least several
order of magnitudes lower and that the very small eigenvalues
characterizing the kernel are now clearly isolated. The graphical
comparison between the initial and the ‘‘corrected’’ data is
Fig. 3. Artificial experimental data: (a) real (E0) and imaginary (E00) part of the complex m
noise-free data and the dots the perturbed data with a white noise of 5%.
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displayed in Fig. 5 shows that the process brings only a
smoothing in the identification process. However the real
impact of the smoothing will be observed in the next step: the
determination of the common positive zeros of the complex
functions f 1 and f 2.

The evolution of absolute values of kf 1k (blue line) and kf 2k (red
line) as function of s in a double logarithmic plot is displayed in
Figs. 6–8 for the initial unperturbed data, the corrected data in
the case of 5% and 10% noise respectively.

The functions computed for initial unperturbed data, see Fig. 6,
show that zeros of the function have to be understood in a numer-
ical sense, even in this case. The zero value represents only a
� 10�4 for one of the elements and goes down to � 10�10 for the
most pronounced zero. The zeros values are positioned at
si ¼ 1=si as expected.

Concerning the case of noisy data, one can remark that in
Figs. 7(a) and 8(a), corresponding to the uncorrected noisy data,
only one out of the four common zeros of f 1 and f 2 is recognizable.
However, the functions computed from the corrected data display
very clearly three out of four common zeros in Figs. 7(b) and 8(b).
Moreover, the identified values of relaxation times, see Table 3,
present only a small shift in spite of the noise in the data. One
can further remark that the Krein and Nudelmann result will find
one relaxation time per decade, without respecting a linear distri-
bution in the logarithmic scale.

The relaxation times si, from the common zeros can now be
used in the identification of the moduli Ei from Eq. (8). The gener-
alized Maxwell model is now completely determined and the val-
ues of the material parameters are presented in Table 3.
odulus (E�) and (b) relaxation modulus (E). The continuous line represents the initial
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Fig. 4. Norm of the eigenvalues of the matrices M1 and M2 in panels (a) and (b) respectively. Each panel represents in a logarithmic scale the distribution of eigenvalues
before and after the ‘‘correction’’ of the data. The color code displays positive eigenvalues in blue and negative ones in red. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 5. The evolution of the real and imaginary part of complex modulus perturbed
with 5% noise. E0 and E00 represent the data before and E0 c and E00 c after ‘‘correction’’. Fig. 6. Evolution of kf 1k and kf 2k as function of s computed with the initial

unperturbed data.
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The comparison between the data and the predicted evolution
of the real part and imaginary part of the complex modulus dis-
played in Fig. 9 shows that both methods, HW and HW + KN, pre-
sent an excellent match with the initial data. However, one should
keep in mind that the HW + KN method used only 3 elements com-
pared with the 6 elements corresponding to one for every time
decade in the classical HW method. The result of the HW + KN
method which determined directly the relaxation times was cap-
able of predicting 3 out of the 4 relaxation times with the correct
order of magnitude. The relative error is increasing with the value
of the relaxation time and the long relaxation time is lost.
However, the influence of noise up to 10% is small as the two noisy
cases predicted very close results.
Please cite this article in press as: Jalocha, D., et al. Revisiting the identificatio
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The capacity of the identified models to predict the relaxation
modulus is presented in Fig. 10. The overall match is good for both
methods, however for short relaxation times one obtains a better
match with the KN + HW model in spite of having only 3 viscoelas-
tic elements.
5.2. Parameter identification using the relaxation modulus

Let us now identify the same model from the artificial relax-
ation data and compare the results obtained from the B and R
method.
n of generalized Maxwell models from experimental results. Int. J. Solids
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Fig. 7. Evolution of kf 1k and kf 2k in function of s for (a) the noised data (5%) and (b) the corrected data.

Fig. 8. Evolution of kf 1k and kf 2k in function of s for (a) the noised data (5%) and (b) the corrected data.

Table 3
Comparison of the identification results between the initial data, the HW method
with 5% noise and the KN + HW method with 5% and 10% noise.

Initial data si ðsÞ 0.05 0.2 2 10
Ei ðPaÞ 400 300 150 8

HW method 5% si ðsÞ 0.01 0.039 0.15 0.63 2.5 10
Ei ðPaÞ 22.4 346.4 352.8 42.8 134.2 0.1

KN + HW method 5% si ðsÞ 0.49 3.1 24.3
Ei ðPaÞ 465 275 116

KN + HW method 10% si ðsÞ 0.50 5.78 19.23
Ei ðPaÞ 459 271 119
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The identification of the expression of the relaxation modulus
used in the preceding section, see Eq. (28), using a least square
fit from the initial artificial data conducts to the following values
of the parameters: Eg ¼ 850 Pa; E0 ¼ 0 Pa; t0 ¼ 0:094 s and
b ¼ 0:903. The comparison between the data and the predictions
of the formula are displayed in Fig. 11(a). In Fig. 11(b) we represent
Please cite this article in press as: Jalocha, D., et al. Revisiting the identificatio
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the evolution of the continuous spectrum H with respect to the
time on a logarithmic scale, see also Eq. (31). The spectrum H
reaches its maximum value of Hmax ¼ 277 Pa at s ¼ 0:104 s. The
support of the spectrum H will be defined as the interval situated
between sc1 ¼ 0:008 s 6 s 6 sc2 ¼ 148 s, corresponding to
c1 ¼ 0:005.

The R method computes the relaxation times using the mini-
mization of the residual function R, given in Eq. (34). Using the
identified models for an increasing number of viscoelastic ele-
ments in the generalized Maxwell model, n ¼ 1; 12 in this exam-
ple, one can also estimate the optimal number of viscoelastic
elements n. We recall that the generalized Maxwell model repre-

sents a discrete spectrum Ĥ which is an approximation of the con-
tinuous spectrum H. The minimization of the residual function R
was performed using standard Mathematica (Wolfram Research,
2014) operators with a final precision corresponding to a 1% rela-
tive error. The value of the residual R as a function of the number
of viscoelastic elements n of the model is plotted in Fig. 12. A rea-
sonable compromise between model prediction and number of
n of generalized Maxwell models from experimental results. Int. J. Solids
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Fig. 9. Comparison for the complex modulus of the perturbed data with 5% noise (points) with the identified generalized Maxwell model (continuous line): on panel (a)
KN + HW method with 3 elements (KN relaxation times), on panel (b) HW method with 6 elements (equidistantly distributed relaxation time on the logarithmic time axis)
(Material parameters from Table 3).

Fig. 10. Comparison of the predictions of the relaxation modulus obtained with the
initial model E, the HW method with 5% noise and HW + KN method with 5% noise,
models identified using DMA data (Material parameters from Table 3).
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elements is already obtained with n ¼ 5 elements. The values of
the identified model parameters for n ¼ 5 are given in Table 4.

For comparison we have also performed a complete identifica-
tion of a generalized Maxwell model associated to this continuous
relaxation using the B method, see (32). The best result was
obtained using a discretization of the time interval ð10�3 s;103 sÞ
with 9 discrete values placed at equal distances on logarithm scale.
The final values of the identified parameters are displayed in
Table 4.

The comparison between the prediction of the relaxation mod-
ulus and real and imaginary part of the complex modulus given by
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different models obtained with the R and B method are displayed
in Fig. 13. The predictions of the relaxation modulus, see
Fig. 13(a), show that a model with optimal relaxation times
(method R) with 5 elements matches the data with the same accu-
racy as a model with logarithmic distributed relaxation times and 9
elements, B method. Moreover, if the number of elements is also
reduced to 5 elements in the case of logarithmic distributed relax-
ation times, B method, the results are far from satisfactory.

The predictions of the complex modulus obtained using the
same models, see Fig. 13(b), show that both method proved a good
match for medium and high pulsations. However only the model
with optimal relaxation times, the R method, matches the data
for small pulsations, in spite of the apparent good match of both
models for the relaxation modulus.

We can conclude the discussion of the examples using artificial
data by stating that the generalized Maxwell model identified with
optimal relaxation times, either using the complex modulus
obtained by DMA experiments with the HW + KN method or using
the relaxation modulus with the R method have almost half the
number of viscoelastic elements of models identified using a loga-
rithmic distribution of relaxation times for a similar accuracy.

6. Application to experimental results

As a second application of the methods we shall consider exper-
imental data for the complex modulus of Polycarbonate and relax-
ation data for Asphalt from literature (Park and Kim, 2001).

6.1. Parameter identification using the complex modulus

The measurements have been performed using Dynamical
Mechanical Analysis on Polycarbonate (PC). The complex modulus
of PC is given for a reference temperature of 140 �C. A circular disk
of PC, 2 mm of height and 25 mm of diameter, is submitted to a
torsional DMA test using an ARES rheometer for a frequency range
between 10�3 and 10 rad=s.

The identification results obtained using the KN + HW method
following the steps described before. The common zeros of the
functions indicates 5 relaxation times. The values of the identified
n of generalized Maxwell models from experimental results. Int. J. Solids
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Fig. 11. (a) Fitted relaxation modulus using Eq. (28) (Eg ¼ 850 Pa; E0 ¼ 0 Pa; t0 ¼ 0:094 s and b ¼ 0:903). (b) Continuous spectrum computed from the relaxation modulus.

Fig. 12. Evolution of the residual function R (34) with respect to the number of
viscoelastic elements n in the optimal generalized Maxwell model.

Table 4
Comparison with initial of the identification results for the relaxation experiments using B m
n ¼ 5 elements.

Initial data si ðsÞ 0.05
Ei ðPaÞ 400

B method 5% si ðsÞ 0.001 0.005 0.03
Ei ðPaÞ 3 10�24 0.1 298

R method 5% si ðsÞ 0.016 0.06
Ei ðPaÞ 52 434

R method 10% si ðsÞ 0.016 0.061
Ei ðPaÞ 52 435
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material parameters of the optimal generalized Maxwell model
with 5 elements are given in Table 5. For comparison reasons we
have equally identified a model with 5 elements using the HW
method and the values of the parameters are also given in
Table 5. The comparison of the real and imaginary part of the com-
plex modulus is presented in Fig. 14. Panel (a) represent the KN
+ HW method and panel (b) represents the HW method. An inspec-
tion of the plots shows that for the same number of viscoelastic
elements only the model identified using optimal relaxation times
is capable to match the data. It also shows that 4 decades of pulsa-
tion are accurately represented using 5 viscoelastic elements.
6.2. Parameter identification using the relaxation modulus

The experimental data for the relaxation modulus of the Asphalt
Concrete at 25 �C has been recovered from literature (Park and
Kim, 2001).

The first step in the identification process was the identification
of the relaxation modulus E given by the closed form
expression of Eq. (28) from the data and the computation of the
relaxation spectrum H, Eq. (31). The coefficients are
E0 ¼ 0; Eg ¼ 12450 MPa; t0 ¼ 1:4 10�4 s and b ¼ 0:39.

The second step consist in identifying the parameters of the
generalized Maxwell model. First the R method is applied for
c1 ¼ 0:005. The results provide a good fit for only n ¼ 6 viscoelastic
elements in the generalized Maxwell model. Second, for
ethod with 5% noise and n ¼ 9 elements and the R method with 5% and 10% noise and

0.2 2 10
300 150 8

0.17 1 5.6 31.6 177 1000
388 128 33 8 2 0.25

0.2 0.78 9.8
194 120 45

0.2 0.79 9.81
195 121 45
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Fig. 13. (a) Relaxation modulus data, with the predicted generalized Maxwell model given by the B method and the R method (Table 4). (b) Complex modulus data, with the
predicted complex modulus given by ‘‘B method’’ and ‘‘R method’’ (Table 4).

Table 5
KN + HW method for the PC complex modulus data

HW method si ðsÞ 0.1 1 10 100 1 000
Ei ðPaÞ 4:4 107 9:5 107 1:8 108 2:1 108 2:3 107

KN + HW
method

si ðsÞ 0.23 0.83 5.5 38.4 251
Ei ðPaÞ 5:1 107 6:1 107 1:2 108 1:9 108 9:6 107
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comparison, a model is also identified using the B method. The
identified coefficients are reported in Table 6 for both models.
Fig. 14. Complex modulus of PC predicted using a 5 elements generalized Maxwell mode
the model are given in (see Table 5).
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The comparison of the predictions of the relaxation modulus are
exhibited in Fig. 15. As before, for the same number of elements,
n ¼ 6 in this case, the R method, using optimal relaxation times
provides a very good match with the experimental data of the
relaxation modulus. The B method provides only a rough estimate
at short relaxation times, where the modulus is overestimated and
an oscillating with important errors for medium times. Additional
computations have shown that the B method needs at least n ¼ 12
viscoelastic elements to match the experimental relaxation data
with the same accuracy as the R method with n ¼ 6 elements.
l identified with (a) the KN + HW method and (b) the HW method. The coefficients of
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Table 6
Identified coefficients using the R and B method for the relaxation modulus of Asphalt Concrete (experimental data from Park and Kim (2001)).

B method si ðsÞ 2:3 10�6 4:1 10�4 6:7 10�2 11.3 322 1913

Ei ðMPaÞ 1:3 10�7 13:1 103 2:4 103 329 43.5 2.8

R method si ðsÞ 1 10�4 9 10�4 6 10�3 4:3 10�2 0.38 1.53

Ei ðMPaÞ 4 103 4:3 103 2:2 103 1:6 103 5:7 102 62.29

Fig. 15. Comparison of the prediction of the relaxation modulus of Asphalt Concrete (data from Park and Kim (2001)) using the R and B method with n ¼ 6 and 12 elements in
the generalized Maxwell model.
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7. Conclusion

This paper discussed the identification of the material parame-
ters of a generalized Maxwell model in linear viscoelasticity. The
parameters of the model are determined either from the relaxation
modulus or from the dynamic modulus obtained from either relax-
ation or a DMA experiment respectively.

The focus of the discussion was the choice of the characteristic
relaxation times representing the viscoelastic elements of the
models. The standard identification methods presented in litera-
ture rely generally on an a priori chosen discrete series of relax-
ation times, often taken as a logarithmic distribution over an
interval. Fixing the relaxation times in advance of the main process
permits to both simplify and regularize the ill-posed character of
the identification procedure.

The paper presented improvements of the methods by propos-
ing alternative methods for the choice of the relaxation times: (i)
using the Krein Nudelman theorem from complex analysis to
determine the exact relaxation times as zeros of complex functions
in the case of the complex modulus and (ii) minimizing of the rel-
ative distance between the discrete approximation and the contin-
uous relaxation spectrum measured using a Riemann integral in
the case of the relaxation modulus. The key-point of both methods
is their capacity to provide a stable and precise way to estimate a
discrete series of relaxation times. These modifications demand
only several additional matrix computations and minimization
when compared with the traditional identification procedures.
These operations are current operators in general purpose pro-
grams like Mathematica, Matlab, etc. The identification process
for the examples discussed in the paper takes several seconds on
Please cite this article in press as: Jalocha, D., et al. Revisiting the identificatio
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a standard laptop and are therefore not an additional numerical
difficulty.

The methods have been applied to both artificial data with and
without noise and to experimental data. In all discussed examples
the generalized Maxwell models identified with optimal relaxation
times had half the number of viscoelastic elements of models as
models using a logarithmic distribution of relaxation times for a
similar accuracy. Moreover using optimal relaxation times pro-
vided models with a better cross predication of data, i.e. prediction
of relaxation modulus with a model identified on the complex
modulus or conversely.

This work opens new perspectives in the determination of non-
linear generalized Maxwell models when the elastic moduli of the
viscoelastic elements will depend also on additional parameters
such a temperature, prestrain, etc. In this cases an optimal distri-
bution of relaxation times proves to be key element in the stability
and accuracy of the identified model.
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