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Abstract Highly filled elastomers exhibit a complex microstructure made up of rigid fillers
bounded by a thin layer polymeric matrix. The interactions between the fillers and the binder
amplify locally the applied strains and induce a nonlinear viscoelastic behavior. The aim
here is to analyze the influence of prestrain on the viscoelastic behavior. This paper pro-
poses a prestrain-dependent viscoelastic constitutive model. The model is a superposition
of three relaxation spectra, each corresponding to a family of polymer chains, and can be
regarded in either its continuous or discrete expression. More specifically, one of these re-
laxation spectra is modified to assure the prestrain sensitivity. The parameters of the discrete
model are identified from relaxation and DMA experiments performed on a solid propellant,
and the obtained predictions match closely the experiments. The novelty of the analysis pro-
posed in this paper is threefold. On the one hand, we report a new series of experimental
measures, performed for a large range of frequencies for the DMA experiment and relax-
ation times for the relaxation experiment, and, on the other hand, we propose a constitutive
law compatible with the principles of thermodynamics, which predicts closely the measure-
ments. Finally, the analysis is performed comparing both relaxation and DMA experiments
using the spectrum of relaxation times. A peculiarity of the present discussion is the novel
identification method used, which identifies directly the relaxation times. This technique
leads to models with smaller and optimum numbers of parameters than classical methods
based on a logarithmic distribution of relaxation times.

Keywords Prestrain · Time spectrum of relaxation · Nonlinear viscoelasticity ·
Constitutive behavior

B D. Jalocha
jalocha@lms.polytechnique.fr

A. Constantinescu
andrei.constantinescu@lms.polytechnique.fr

R. Neviere
robert.neviere@herakles.com

1 Laboratoire de Mecanique des Solides, CNRS UMR 7649, Ecole Polytechnique, ParisTech,
91128 Palaiseau Cedex, France

2 Herakles, Centre de Recherche du Bouchet, 9 rue Lavoisier, 91710 Vert Le Petit, France

mailto:jalocha@lms.polytechnique.fr
mailto:andrei.constantinescu@lms.polytechnique.fr
mailto:robert.neviere@herakles.com


Mech Time-Depend Mater

1 Introduction

Composite materials are employed in various applications, in which they exploit their excep-
tional properties. Carbon fiber composites appreciated for the excellent stiffness-to-weight
ratio are increasingly applied in the aerospace industry (Botelho et al. 2003). Reinforced
rubbers are solicited in large elastic strain regime with damping and are recommended for
the manufacturing of tires, sealing, etc. (Roeder and Stanton 1983). Solid propellants, an-
other class of reinforced rubbers, are retained for their energetic properties in solid boosters
(Ozupek 1989). The mechanical behavior of these different composites is generally vis-
coelastic and tailored with respect to the final application. Therefore, the modeling of the
material behavior at different scales took an important place in the last decades (see, e.g.,
Huber and Tsakmakis 2000; Christensen 1980; Swanson and Christensent 1983).

The models describing the mechanical viscoelastic behavior of reinforced elastomers
or rubbers are of different nature. Some studies propose hyperelastic constitutive models
for filled elastomer (Arruda and Boyce 1993; Oscar 2010), and others reproduce the time-
dependent behavior of the material based on phenomenological consideration (Ozupek and
Becker 1992; Simo 1987; Steinmann et al. 2012) or on homogenization theory (Xu et al.
2008). Specifically, nonlinear viscoelastic models have recently been explored by combin-
ing the physics at the scale of the microstructure with the mechanical observation at the
macroscopic scale of the applications (Azoug et al. 2014a, 2014b, 2014c). Other studies
(Lion and Kardelky 2004) proposed complex constitutive models in the large-strain regime
taking into account the nonlinear effects due to the presence of high-volume fraction of
fillers.

Reinforced polymers and rubbers will cover a large range of the volumetric filler fraction,
lying between 20 % and 70 %. Small filler fractions are used in rubbers, whereas high
filler fractions are found in propellants. We remark that generally the nonlinearity of the
mechanical behavior increases with increasing filler fraction.

The aim of this paper is to explore the particular nonlinearity induced by a prestrain on
the viscoelastic properties of a highly filled elastomer. This effect was observed during an
experimental campaign on solid propellants, performed by Azoug (2010) and reported in
several articles. In Thorin et al. (2012) the influence of prestrain on viscoelastic properties
for different HTPB composite propellants was measured using dynamic mechanical anal-
ysis (DMA). The prestrain-dependent behavior was modeled using a modified generalized
Maxwell model, where the stiffnesses of each Maxwell element was linearly dependent on
prestrain. The paper (Azoug et al. 2013b) was devoted to a biaxial experiment having a
prestrained DMA on one axis and a fixed prestrain on the other. The experiments showed
that the storage and loss moduli increase with the prestrain under both loadings and that
the nonlinear behavior is quantitatively modified by adding an orthogonal prestrain. More-
over, the modification of the behavior under a horizontal prestrain was canceled out by an
increase of the vertical prestrain, a phenomenon that may be explained by the alignment
of the fillers with the prestrain. The experimental results of a complete biaxial prestrained
DMA experiment have been recently reported in Jalocha et al. (2015b). The experiments
on propellant specimen confirmed the previous results. Moreover, it has been shown that
the dependence of prestrain in biaxial experiments can be characterized using the second
invariant of the prestrain. The limitation of the reported analysis is the unique frequencies
where the viscoelastic nonlinearity has been measured. The novelty of the analysis proposed
in this paper is threefold. On the one hand, we report a new series of experimental measures,
performed for a large range of frequencies for the DMA experiment and large range of times
for the relaxation experiment. On the other hand, we propose a constitutive law, compatible
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with the principles of thermodynamics, which predicts closely the measurements. Finally,
the analysis is performed comparing both relaxation and DMA experiments.

The analysis of the data starts from the idea that relaxation spectrum and generalized
Maxwell models represent continuous and approximate discrete viscoelastic models, respec-
tively. As a consequence, the variations of the experimental observations as functions of the
prestrain are considered as variations of the measured complex and relaxation moduli. In
this paper, we propose a prestrain-dependent viscoelastic constitutive model. The model is a
superposition of three relaxation spectra, each corresponding to a family of polymer chains,
and can be regarded in either its continuous or discrete expression. More specifically, one
of these relaxation spectra is modified to assure the prestrain sensitivity. The parameters
of the discrete model are identified from relaxation and DMA experiments performed on a
solid propellant, and the obtained predictions match closely the experimental. A particular-
ity of the present discussion is the novel identification method used, which identifies directly
the relaxation times. This technique leads to models with smaller and optimum numbers of
parameters than classical methods based on a logarithmic distribution of relaxation times.
A detailed mathematical description of this identification algorithm and a discussion of its
robustness are reported in Jalocha et al. (2015a).

The paper is organized as follows. The first section presents the material and experiments.
The second and third sections discuss the continuous and discrete models, respectively. The
final sections present the results and conclusions.

2 Material and experiments

2.1 Material

The material studied here is a solid propellant, used for the propulsion of rockets and clas-
sified as a highly filled elastomer. Fillers represent 70–80 % of the total volume and are
bonded by a viscoelastic matrix (Azoug 2010), see Fig. 1(a). The performance of the rocket
engine will depend on both energetic capacity of the filler and the mechanical properties
of the propellant in order to guarantee the performance and integrity of the engine. The
mechanism of the engine can be summarized as follows. The oxidation-reduction reaction
decomposes the fillers and produces highly pressurized gases in the combustion chamber,
and the gases are ejected through the nozzle of the engine and propel the rocket. Integrity
of the engine imposes that the evolution of the propellant during the burning process stays
stable and in accordance with the initial design in spite of the important mechanical loadings
of the propulsion.

The high-volume fraction of fillers demands exceptional mechanical properties from the
matrix that is a network of thin bridges surrounding the rigid fillers. The characteristic of
the polymer matrix assured by its microscopic chemical and physical properties. The manu-
facturing process will generally create an over cross linked elastomer matrix. At the micro-
scopic scale, one will encounter a multiphase binder as already discussed in Azoug (2010)
and composed of: (i) a principal cross linked network polymer that bonds the solid particles
together and (ii) nonlinked polymer chains floating freely through the principal network.
An idealized structure is displayed in a schematic diagram in Fig. 1(b).

2.2 Experimental procedure

The viscoelastic behavior of the propellant at the macroscopic scale of the structure can be
characterized using standard relaxation or DMA experiments. Let us next introduce some
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Fig. 1 Microstructure of solid
propellant: (a) optic observation
under a scale factor of 10 and
(b) schematic representation of a
cross section

standard notation and equations in order to clarify the concepts and the mathematical for-
mula involved in the modeling.

The viscoelastic behavior of a material is completely represented by the continuous spec-
trum of relaxation time H(τ) as exposed, for example, in Findley et al. (1976). The spectrum
H(τ) is related to the relaxation modulus E(t) over the time domain and to the dynamical
modulus E∗(ω) = E′(ω) + iE′′(ω) over the frequency domain by the following equations:

E(t) = E0 +
∫ ∞

−∞
H(τ) e− t

τ d ln(τ ), E∗(ω) = E0 +
∫ ∞

−∞
H(τ)

iωτ

1 + iωτ
d ln(τ ). (1)

According to Markovitz (1977), the relaxation and complex moduli permit to establish
the classical viscoelastic constitutive equations, expressed in the time domain as

σ(t) =
∫ t

−∞
E(t − τ)

dε(τ )

dτ
dτ (2)

and in the frequency domain as

σ ∗(ω) = E∗(ω)ε∗(ω), (3)

where σ and ε denote the stress and strain fields, respectively. The representations in (1)
and (3) are equivalent, and the passage between the time and frequency domains is obtained
through a direct or inverse Fourier transform. As a consequence, σ ∗ is the direct Fourier
transform of the stress σ , ε∗ is the direct Fourier transform of the strain ε, and the complex
modulus E∗ is the direct Fourier transform of the relaxation modulus E.

Let us further recall that the spectrum of relaxation times H(τ) cannot be measured di-
rectly. It is only recovered from either the relaxation modulus E(t) or the complex modulus
E∗(ω), which are the direct outputs of the relaxation and DMA experiments; for a detailed
explanation, see Knauss et al. (2006). As a consequence, we can conclude that the relaxation
and the DMA experiments are dual to each other, one representing the time domain, and the
other the frequency domain.

The time or frequency domain, covered by the relaxation or the complex modulus, re-
spectively, tends to cover several orders of magnitude. Hence, it is difficult to cover exper-
imentally the complete viscoelastic domain, and based on the time–temperature superpo-
sition principle, the so-called master curves of relaxation and complex modulus are con-
structed. The method is explained, for example, in Brinson (2008), Williams et al. (1955).

The objective here is to propose a viscoelastic constitutive model with prestrain sensi-
tivity capable of predicting data from relaxation and DMA experiments. The main features
of the experimental procedure are summarized in Fig. 2. In both cases, strains are imposed,
stresses are measured, and the moduli are computed from the measured data. The data will
be first collected in the format of a master curve encompassing several orders of magnitudes
in the time or frequency range and used after for identification of the model. The prestrain is
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Fig. 2 Schematic view of the
experimental procedure

applied in both experiments as an initial load step as represented schematically in Fig. 3. The
mathematical duality of the measured data in the sense of the Fourier transform discussed
implies that the effect of the applied prestrain should be represented by the same phenomena
to cover both loading cases.

In the time domain, the relaxation modulus E(t) is measured in the following way: a
tensile prestrain εs is imposed, and then, after a short delay of 10 min considered large
enough for the stress to reach a stabilized state, the relaxation test is started. The history
of the imposed strain is displayed in Fig. 3(a). The relaxation test is performed imposing
a tensile strain step superimposed with the prestrain: ε(t) = εs + ε0h(t) (where h(t) is the
Heaviside function), and the decreasing stress σ(t) is recording in function of the time. The
relaxation modulus is computed from the data as the secant modulus defined by E(t) =
�σ(t)

ε0
, where �σ(t) is the difference between the relaxed stress and the residual stress as a

function of the imposed prestrain.
In the frequency domain, the complex modulus E∗(ω) is measured in the following steps:

a tensile prestrain εs is imposed, and, after a short delay of 10 min, the DMA test is started.
The history of the imposed strain is displayed in Fig. 3(b). The DMA test is performed
imposing sinusoidal strain around the given prestrain, ε(t) = εs + εd sin(ωt), and the stress
σ(t) is recorded. The complex modulus is computed as the secant modulus using the formula
E∗(ω) = σd

εd
(cos δ + i sin δ), where σd is the amplitude of the sinusoidal stress, εd is the

amplitude of the sinusoidal strain, and δ is the time delay between the strain and stress
signals measured during the stabilized period.

As mentioned before, both moduli are computed as secant moduli. This guarantees the
consistency and correlation in the data processing between the two experiments.

In experiments involving viscoelastic filled materials under relaxation or DMA tests, one
encounters the Payne effect (Payne 1962) or, close to the large-strain region, the Mullins
effect (Mullins 1969). In the time domain, the Mullins effect characterizes an instantaneous
softening of the stress–strain curve that occurs whenever the load increases beyond its prior
all-time maximum value. For the propellant under scrutiny, we remark that a small soften-
ing of the Mullins type is generally observed. However, the effect is completely erased if
a sufficiently long time lapse occurs between the two loadings. In the frequency domain,
the Payne effect characterizes a softening of the norm of the complex modulus, which in-
creases the applied dynamic strain amplitude. The effect is present in the material and was
the reason to chose only small dynamic strain amplitudes. However, the chosen amplitude
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Fig. 3 Experimental setup to
measure the relaxation modulus
(a) and the complex modulus (b)
under prestrain εs

is smaller than that encountered in practical applications. Let us further remark that the two
effects are generally considered to be physically closely related and could be at the ori-
gin of the small difference in viscoelastic properties measured from the relaxation and the
DMA experiments. Except this fact, the process history of the material does not change the
experimental results.

Mathematically, it is straightforward that the essential features of the model are expressed
as the spectrum of relaxation times H(τ), and the aim is to identify the spectrum from both
relaxation and DMA experiments. Therefore, DMA results are transposed into the time do-
main using the inverse Fourier transform based on the empirical relation E(t) = ‖E∗( t

2π
)‖.

2.3 Experimental results

The relaxation tests have been performed for the following prestrain values: εs = 0; 1.2; 2.5;
3.7; 5; 6; 7.2; 8.4 % at temperatures between +20 °C and +40 °C. The choice of the max-
imum prestrain value of 8.4 % ensures that the experiments are performed in the incom-
pressible domain of the material and that damage (i.e., filler debonding, matrix fracture,
etc.) does not occur. The temperature range is coherent with the application constraints of
the model. Moreover, results given at smaller temperature than the lower limit of +20 °C
can later be replaced with DMA experiments, which provide data of better accuracy. The
upper limit +40 °C covers, after the time-temperature superimposition, the application of
the model.

The master curves obtained at a reference temperature of Tref = 20 °C for different pre-
strain values are presented in Fig. 4. Panel (a) presents the time evolution of the relaxation
modulus E(t), and panel (b) displays the instantaneous values of the relaxation modulus at
t = 0.03 s. Both representations show that the relaxation modulus increases nonlinearly as a
function of the prestrain εs .

The DMA tests are performed for the values of prestrain εs = 0; 3; 4; 6 % at tempera-
tures between −90 °C to +90 °C with an increment of 5 °C. The imposed strain amplitude
εd for the DMA test was equal to 0.02 %, and, as a consequence, the ratio between the cyclic
varying strain and the static strain load was in minimum 2 × 10−3.

The master curves obtained from the DMA data for the reference temperature of Tref =
20 °C are presented in Fig. 5. Panel (a) represents the evolution of the norm of the amplitude
of the complex modulus ‖E∗(ω)‖ for increasing pulsation ω and different prestrains. One
can remark that the influence of the prestrains occurs essentially at small pulsation. More-
over, a detailed analysis of the evolution of ‖E∗(ω)‖ with increasing prestrains, at fixed
pulsation ω = 31.4 rad/s, displayed in panel (b), exhibits a twofold increase of the ampli-
tude of the complex moduli accompanied with a 30 % decrease of tan(δ) over the tested
prestrain range.
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Fig. 4 (a) Relaxation modulus master curves under prestrain between 0 % ≤ εs ≤ 8.4 % for a relaxation
strain step of ε0 = 1% and for a reference temperature of Tref = 20 °C. (b) Nonlinear evolution of the
relaxation modulus in function of the prestrain εs for a given time t = 0.03 s

Fig. 5 (a) Complex modulus amplitude master curves under prestrain value εs of 0; 3; 4; 6 % and for a
dynamical strain amplitude of εd = 0.02 % and for a reference temperature of Tref = 20 °C. (b) Nonlinear
evolution of the complex modulus amplitude ‖E∗(ω)‖ and the phase angle δ in function of the prestrain εs

for a given angular frequency ω = 31 rad/s

The discrepancy for low frequencies, smaller than 105 rad/s, is the direct effect of the
prestrain. The different curves show that the amplitude of the complex modulus increases
with respect to the prestrain value. As in the case of the relaxation modulus, the complex
modulus amplitude increases as a function of prestrain εs , but the phase angle δ decreases
nonlinearly as a function of the same prestrain; see Fig. 5(b).

A complete master curve for the relaxation modulus relaxation in the absence of prestrain
εs = 0 % is exhibited in Fig. 6. The curve is an overlap of the relaxation data, which cover the
large times, and the inverse Fourier transform of the DMA data, which cover small times.
It will cover a total time range between 10−15 s and 108 s for a reference temperature of
20 °C. In panel (a) of Fig. 6, we displayed the relaxation curve, and one can observe a good
match between the two data sets, in spite of a small slope change captured by the DMA
relaxation data. Panel (b) of Fig. 6 exhibits a comparison between DMA and relaxation data
in the evolution of the relaxation modulus with prestrain at t = 0.03 s. The data sets have a
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Fig. 6 Complete classical master curve of relaxation modulus using relaxation and DMA data. (a) Evolution
of the relaxation modulus for εs = 0 % as a function of time from 10−15 s to 108 s. (b) Evolution of the
relaxation modulus as a function of prestrain εs

similar nonlinear evolution with a relative error of ≈10 % for small prestrains, which grows
to ≈15 % for large prestrains.

3 Continuous model

3.1 Material without prestrain

Physically, for polymer material, the relaxation spectrum H(τ) is related to the statistical
distribution of the molecular mobility of polymer chains (Doi 1974). At the microscopic
scale, the molecular mobility can now be measured by nuclear magnetic resonance (NMR)
spectrometry to investigate the spin relaxation times of the chains. Moreover, the results
from NMR published in Mowery et al. (2005), Litvinov and Steeman (1999) prove the exis-
tence of a multiphase matrix in reinforced polymers and explore the influence of the binder
matrix interactions on the mechanical properties.

At the macroscopic scale, this spectrum can be computed directly from the complete
master curve of the relaxation modulus using the inverse Laplace transform; see Eq. (1).
Following Baumgaertel and Winter (1992), a linear relaxation modulus curve can be gener-
ally expressed by the following analytical expression:

E(t) = E0 + Eg − E0

(1 + t
t0
)β

, (4)

where E0, Eg , t0, and β are adjustable parameters. Starting from the two remarks and ap-

plying the change of variable f (z) = H( 1
z )

z
in (1), the analytical expression of the spectrum

H(τ) is given by the inverse Laplace transform of (4):

H(τ) = (Eg − E0)

Γ (β)

(
τ

t0

)−β

e− t0
τ (5)

with Γ (β) the Gamma function of β . See Smith (1971) and Widder (1946) for a complete
explanation of the operations performed.
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An inspection of the curve of relaxation modulus of solid propellant without prestrain
displayed in Fig. 6(a) shows that the relaxation modulus is not linear. Based on NMR mea-
surements, Azoug et al. (2014c, 2015) showed that propellant has a multiphased matrix due
to his manufacturing process. Moreover, they were able to bring up three phases in the ma-
trix of the propellant associated to families of polymer chains and mechanisms of mobility
to explain the observed nonlinearity in the relaxation. Zimm and Lumpkin (1993) proposed
to associate mechanism of molecular mobility to phases of the polymer matrix. As a conse-
quence of the previous observation, we propose to associate to each a phase of the matrix of
the propellant and correspondingly to each chain mobility mechanism a relaxation modulus
of the form (4) and to sum up the contributions in the relaxation modulus:

E(t) = E1(t) + E2(t) + E3(t). (6)

As a consequence, the modulus is approximated by the following analytic expression:

E(t) = Eg1

(1 + t
t1
)β1

+ Eg2

(1 + t
t2
)β2

+ Eg3

(1 + t
t3
)β3

. (7)

From a physical point of view, as explained in Azoug et al. (2013a), this decomposition
is coherent with the assumption of the existence of three families of different molecular
mobilities in the binder:

• The first family (subscript “1”) represents the molecular mobility of the principal reticu-
lated network polymer of the matrix.

• The second family (subscript “2”) represents the molecular mobility of the free polymer
chains through the principal network of the matrix.

• The third family (subscript “3”) represents the long-time polymer chain mobility.

As the Laplace transform is a linear operator, from (7) it follows that the relaxation spectrum
is the sum of the contributions for each phase H(τ) = H1(τ )+H2(τ )+H3(τ ), or explicitly:

H(τ) = Eg1

Γ (β1)

(
τ

t1

)−β1

e− t1
τ + Eg2

Γ (β2)

(
τ

t2

)−β2

e− t2
τ + Eg3

Γ (β3)

(
τ

t3

)−β3

e− t3
τ . (8)

3.2 Prestrained material

Simhambhatla and Leonov (1995) assumed that the prestrain influences only the mobility
of the free polymer chain, and the change induced into the fillers network will only affect
the elastic part of the behavior, not the viscous part. Physically, one can visualize the effect
of prestrain as a trapping mechanism of the fillers and the reticulated polymer network on
the free chains, which have a growing restriction in the movement with increasing prestrain.
Moreover, the NMR measurements on prestrained samples, reported in Azoug et al. (2015),
show that the prestrain influences only the second family corresponding to free polymer
chains, confirming the assumptions. This means that the prestrain affects the slope of the
second contribution to the relaxation modulus, which implies that β2 becomes a function of
the prestrain εs . The prestrain-modified spectrum H takes the following expression:

H(τ, εs) = Eg1

Γ (β1)

(
τ

t1

)−β1

e− t1
τ + Eg2

Γ (β2(εs))

(
τ

t2

)−β2(εs )

e− t2
τ

+ Eg3

Γ (β3)

(
τ

t3

)−β3

e− t3
τ . (9)
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Table 1 Identified parameter of
the relaxation modulus in the
absence of prestrain

Egi [MPa] ti [s] βi [adim]

E1 12191 3.4 × 10−12 0.333

E2 91 3.1 × 10−5 0.312

E3 6 1.27 0.07

Fig. 7 A comparison of
measured and predicted (7)
master curve of the relaxation
modulus and the evolution of the
relaxation moduli of the three
phases

3.3 Identification

The parameters of the three families, that is, (Egi, ti , βi)1≤i≤3, are now identified from the
experimental relaxation modulus curves in two steps: (i) identification of the parameters
in the absence of prestress εs = 0, that is, the parameter β2 is considered constant, and
(ii) identification of the prestress-dependent parameter β2(εs). Both steps are performed by
minimizing the least square error between the model using the NonLinearModelFit
operator of MATHEMATICA® (Mathematica).

The identified parameter values in the absence of prestress εs = 0 are summarized in
Table 1, and the comparison between prediction and measurements is plotted in Fig. 7. The
model matches measurements over the total range of time, with the exception of the first
decades, where a large error is observed. A closer inspection of plot and of the identified
parameters shows that viscoelasticity is predominately driven by the molecular mobility
of the first phase, representing the reticulated network. Nevertheless, in the time interval
10−4 ≤ t ≤ 10 s, one can remark that the second phase of free polymer chains has a signif-
icant influence, even if its amplitude represents only 1 % of the amplitude of the principal
reticulated network (

Eg2
Eg1

≈ 0.01). The contribution of the third phase is very small when

compared with the two others. However, it describes the viscoelastic behavior at long times.
The identified values of the model are now used to display in Fig. 8 the continuous spec-

trum of relaxation times and the contribution of the three phases of the polymer matrix. The
phases representing molecular mobility will each contribute to a local maximum situation
times τ of 1 × 10−11 s, 1 × 10−4 s, and 1.8 × 1 s, respectively. As expected, one can remark
a similar trend with the spectra of spin–spin relaxation times of the chains obtained by NMR
spectrometry.

The prestrain dependence of the complete behavior is embodied only in the parameter β2

as mentioned earlier. The identification is performed using experimental data exhibited in
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Fig. 8 Identified spectrum of
relaxation times of solid
propellant H(τ) (see (8)) with a
focus on the time between
10−6 ≤ τ ≤ 106 in order to
observe the second local
maximum.

Fig. 9 Evolution of β2 in
function of the prestrain: dots are
identified from experimental
results, a solid line is the
proposed model (10) to catch this
evolution

Fig. 6(b), and a model is proposed, given by the following expression:

β2(εs) = β0
2

(1 + ( εs

εr
)q)

. (10)

The nonlinear regression leads to β0
2 = β2(0) = 0.312 (see Table 1), εr = 0.045, and q = 2.1.

Figure 9 presents the comparison of the prediction of the model and experimental data,
represented as a continuous line and dots, respectively.

The complete identification of the prestrain-dependent model permits to inspect the evo-
lution of the spectrum of relaxation as a function of time and prestrain, that is, H(τ, εs).
Figure 10 exhibits the time evolution of H(τ, εs) for the prestrain values εs = 0, 2, 4, 6 %.
The plot shows a finite support in time and a decreasing of the second protuberance with
increasing prestrain. This protuberance represents the contribution of the second prestrain-
dependent molecular mobility of free polymer chains. From the physical point of view, the
decreasing contribution is the signature of the increasing trapping of the free chains with
increasing prestrain.

4 Generalized Maxwell model with prestrain effect

Let us consider a viscoelastic body occupying the domain Ω . Using the standard notation
in continuum mechanics, we shall denote the current point in the reference and the actual
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Fig. 10 Evolution of the
spectrum of relaxation time
between 10−6 ≤ t ≤ 10 s for
prestrain εs = 0, 2, 4, 6 %. The
second protuberance is
decreasing with increasing
prestrain

configuration as X and x, respectively. The transformation gradient F is defined as F = ∂x

∂X
.

Under the assumption of small strain, the transformation gradient becomes F = I+Grad(u),
where u = x −X stands for the field of displacements. The small strain tensor ε is computed
as ε = 1

2 (Grad(u) + GradT (u)).
The viscoelastic constitutive law is presented in the framework proposed initially in

Halphen and Nguyen (1975), Holzapfel (2006) and denoted as generalized standard ma-
terials. This formal framework is thermodynamical and assures the complete consistency
with the principles of thermodynamics and conducts naturally to efficient and robust numer-
ical integration algorithms. The constitutive law is defined in terms of the free energy ψ and
the dissipation potential φ. For the viscoelastic bodies studied here, we consider a decoupled
representation of the free energy ψ :

ψ
(
ε,α1, . . . ,αm

) = ψ∞(ε) +
n∑

i=1

ψi
(
ε,αi

)
, (11)

where ψ∞ and ψi with 1 ≤ i ≤ n represent the elastic and viscoelastic parts of the free en-
ergy, and αi denote a series of internal variables; their physical significance will be clarified
later in the presentation.

In this framework, according to Coleman and Gurtin (1967), the total stress σ is defined
as

σ = ∂ψ

∂ε
= ∂ψ∞

∂ε
+

n∑
i=1

∂ψi

∂ε
. (12)

The formal construction assures that for any isothermal process, the Clausius–Duhem in-
equality

0 ≤ σ : ε̇ − ψ̇

is satisfied if

∂ψi

∂αi
+ ∂φi

∂α̇i
= 0 (13)

with φi the dissipation potentials. A detailed discussion of this point for the case of vis-
coelasticity is given, for example, in LeTallec and Rahier (1994).
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In order to specify detailed expressions of the free energy and the dissipation potential,
we make the following choice of a quadratic expression for the elastic part for the free
energy:

ψ∞(ε) = 1

2
E∞ε : ε, ψi

(
ε,αi

) = 1

2
Ei

(
ε − αi

) : (ε − αi
)
, (14)

with 0 ≤ E∞ and 0 ≤ Ei . This choice leads to a classical model in linear viscoelasticity and
is also presented, for example, in Simo (1987).

If we further assume that the internal variables αi represent the strain in the viscous
dampers, then the fictitious stress q i acting on each damper will be associated to the inter-
nal variable αi . Similarly to the reasoning in Holzapfel (2006), by analogy with (12) we
postulate that

qi = − ∂ψ

∂αi
.

Therefore, applying (14) leads to

qi = Ei
(
ε − αi

)
, 1 ≤ i ≤ n. (15)

The dissipation potentials are equally chosen as quadratic potentials:

φi = 1

2
ηi α̇

i : α̇i , 1 ≤ i ≤ n, (16)

where the viscosity ηi is a positive real number. The construction of the constitutive model
does not restrict so far a strain-dependent viscosity parameter. A similar construction and
extended discussion of the subject are presented in Amin et al. (2006). As a consequence,
we define the constant relaxation time τi as τi = ηi

Ei
with ηi the viscosity value at the origin

of the process.
A series of simple algebraic transformations of Eqs. (12) and (14) lead to the following

expression of stresses:

σ = E∞ε +
n∑

i=1

Ei
(
ε − αi

)
. (17)

Moreover, (13) and (16) lead to the following system of evolution equations for the internal
variables αi :

ηi α̇
i − Ei

(
ε − αi

) = 0. (18)

Complete equations of the constitutive model are obtained after a final inference, which
starts from the assumption q∞ = E∞ε, then uses the definition of the fictitious stress q i , and
finally replaces the expression into (17) and (18). The final expression of the constitutive
equations in terms of stresses and internal variables is

σ = q∞ +
n∑

i=1

q i , (19)

ηi ε̇ = τi q̇
i + q i . (20)

The viscoelastic constitutive model described previously is denoted as a generalized
Maxwell model. Moreover, it is consistent with the principles of thermodynamics by con-
struction. It can also be described in terms of rheological elements by the so-called Prony
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Fig. 11 (a) Schematic view of a generalized Maxwell model with variable, prestrain dependent viscosity.
(b) Evolution of viscosity with prestrain in the 17th and 28th element of the identified model

series. The n viscoelastic elements are completely described by the characteristic parame-
ters (τi, ηi)1≤i≤n, where τi is the discrete relaxation time, and ηi is the associated viscosity.
It is generally schematically represented by simple rheological elements using springs and
dampers; see, for example, (Findley et al. 1976; Simo and Hughes 1998) and the graphic
representation in Fig. 11(a).

For a homogeneous one-dimensional specimen, the model can be easily integrated nu-
merically. The backward Euler method leads to the following time stepping algorithm, where
the stress σm at the time instant tm is computed as a function of the stress σm−1 at the pre-
ceding time instant tm−1 and a load increment expressed as the total strain increment in the
following steps:

(i) �t = tm − tm−1;

(ii) qi
m = ηi (εm−εm−1)+τiq

i
m−1

τi+�t
;

(iii) q∞
m = E∞εm;

(iv) σm = q∞
m + ∑n

i=1 qi
m.

This algorithm can then be generalized into full 3D evolution equations and implemented in
standard finite element codes.

5 Results and discussion

The viscoelastic relaxation spectrum H(τ, εs) is a continuous function of the time τ already
discussed. Moreover, the continuous spectrum accepts a discrete approximation in the form
of the prestrain εs dependent generalized Maxwell model, represented by the so-called Prony
series. The identification and comparison of its predictions with experimental data will be
discussed next.

Let us start with the continuous spectrum in the absence of prestrain H(τ,0). The iden-
tification method of such a spectrum is performed in two steps: (i) the choice of the charac-
teristic times of the viscoelastic elements and (ii) the determination of the viscosities.
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The classical choice of characteristic times is an equidistant distribution on the logarithm
scale as suggested, for example, in Baumgaertel and Winter (1992). Here we use an opti-
mization method minimizing the distance between the continuous spectrum and its discrete
approximation. The mathematical background of the method and its application has exten-
sively been discussed in Jalocha et al. (2015a). In order to cover the features in this paper,
we propose a short review in the Appendix.

If we consider the support of the continuous spectrum defined by a cut of 0.005 of its
maximal value, 0.005 Hmax ≤ H(τ) ≤ Hmax, then the corresponding time interval is defined
for τ as 10−14 s ≤ τ ≤ 1020 s. The demanded accuracy in the optimization process for a
relaxation spectrum H with three protuberances, one for each phase of the matrix, has led
to n = 48 discrete characteristic relaxation times τi . The Prony series is completed by the
values of the viscosity ηi obtained by the formula

ηi = H(τi,0)τi ln(ri) (21)

with ri =
√

τi+1
τi−1

. The n elastic moduli Ei are computed as the ratio of viscosities and char-

acteristic times:

Ei = ηi

τi

. (22)

To continue the identification method, we now introduce the prestrain dependence of the
continuous spectrum H(τ, εs). The prestrain dependence is only carried by the viscosity ηi

of each element, and therefore, the prestrain-dependent viscosity naturally becomes

ηi(εs) = H(τi, εs)τi ln(ri). (23)

Let us finally remark that the construction preserves prestrain-independent characteristic
times, whereas the viscosity is prestrain dependent. The expression of the thermodynamic
potentials preserve a quadratic free energy in terms of strains and is coherent with the prin-
ciples.

A schematic view of the model is presented in panel (a) of the Fig. 11, and panel (b)
illustrates the identified prestrain viscosity evolution of the 17th and 28th elements of the
identified model. One can remark that the elements have different evolutions, which is also
a signature of different nonlinearities in different viscoelastic elements.

The predictions of the identified prestrain-dependent generalized Maxwell model will be
compared next with experimental data from the relaxation or the DMA tests.

The first comparison concerns the relaxation test starting from several values of prestrain,
with an imposed strain history as displayed in Fig. 3(a). The value of the strain step was
ε0 = 1 %.

The comparisons of model predictions and experimental data in terms of evolution of the
relaxation modulus as a function of time are plotted in Fig. 12(a). The figure represents the
time interval 0.03 ≤ t ≤ 1000 s, where the nonlinearity is strongest. The model matches both
the evolution of the relaxation modulus as a function of the time and the order of magnitude
imposed by the presence of different prestrains.

The second comparison concerns the DMA test. We only represent the evolution of the
norm of the complex modulus and of the loss modulus as a function of prestrain at a given
angular frequency for several prestrain values, with an imposed strain history as displayed
in Fig. 3(b). The chosen pulsation and strain step values were ω = 31 rad/s and εd = 0.02 %,
respectively. The viscosity ηi of the prestrain-dependent model is considered to follow the
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Fig. 12 Comparison between the predictions of the prestrain dependent generalized Maxwell model and
experimental results. (a) Evolution of the relaxation modulus as a function of time for different values of
prestrain. (b) Evolution of the norm of complex modulus as a function of prestrain for ω = 31 rad/s and
εd = 0.02 %

evolution prescribed in (23). We further assumed that the prestrain εs can be reasonably
approximated by the total strain ε.

A comparison, in terms of the norm of the complex modulus as a function of the prestrain,
between numerical predictions and the measured experimental data is plotted in Fig. 12(b).
One can easily observe that the model predictions match the experimental data. Moreover,
the experimental increase of the amplitude of the complex modulus as a function of the
prestrain is closely described by the model. The small panel in the same picture exhibits
the capacity of the same model to correctly predict the decrease of the shift factor δ as a
function of the prestrain. A close inspection of the values shows a small overestimation of
the numerical prediction when compared with the experimental data.

6 Conclusion

We presented a series of relaxation and DMA experiments involving prestrain and proposed
a thermodynamical coherent constitutive model to predict the measured data. The proposed
model is a prestrain-dependent generalized Maxwell model. The prestrain dependence was
carried by the viscosities of each viscoelastic element, whereas the characteristic relaxation
times and elastic moduli stayed prestrain independent. The parameters of the model were
then identified from experimental data with a robust identification method, and numerical
predictions using a simple backward Euler integration algorithm allowed us to confront the
model to the experiments.

The material under discussion was a high filled elastomer in the form of a solid propel-
lant. It exhibited a high-volume fraction of the filler with respect to the matrix and, as a
consequence, manifested a complex viscoelastic behavior.

The results show that the nonlinearity of the macroscopic material behavior exhibited
during relaxation and DMA experiments could be matched by the predictions of the exper-
iment. The nonlinearity discussed in this paper was the evolution of the viscoelastic prop-
erties as a function of the prestrain. The results presented here complete both in terms of
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experiments and modeling the initial results studied in Azoug (2010), Azoug et al. (2013b),
Thorin et al. (2012).

The nonlinear evolution of viscoelastic behavior as a function of the prestrain is a direct
physical signature of the mobility of the molecular chains in the polymeric binder. The
experimental results discussed here confirm the NMR result obtained at a microscopic scale
and reported in Azoug et al. (2015). Moreover, they also show that the prestrain influences
the relaxation modulus up to time t = 10−4 s.

The proposed prestrain-dependent generalized Maxwell model predicts closely the ex-
perimentally observed nonlinear viscoelastic behavior in terms of (i) complex and loss
moduli or (ii) relaxation moduli. The thermodynamic consistent construction of the model
is compatible with two or three spatial dimensions and can therefore easily be extended
for multi-axial loading configurations. An interesting perspective is the exploration of the
prestrain-dependent biaxial experimental. A further challenge is the programming of a com-
plete numerical integration algorithm.

The influence of the prestrain on the second phase, characterizing the molecular mo-
bility of the free polymer chains, seems to be a characteristic of highly filled elastomer.
Preliminary finite element computations on 3D microstructures have shown a tenfold ampli-
fication of the strain inside the matrix when compared with the applied macroscopic strain.
This strain amplification diminishes the space between the fillers and therefore restrains the
movements of the free polymer chains. A work in progress analyzes the evolution of this
effect as a function of the filler volume fraction.

This papers opens new perspectives both in terms of experiments and theory for the
nonlinear viscoelastic behavior of solid propellant and, more generally, for highly filled
elastomer under multiaxial prestrain.

Acknowledgements The authors would like to thank the Direction Générale de l’Armement, especially
Laurent Munier (DGA), and HERAKLES-SAFRAN for financial support for this study.

Appendix: Discretization of the continuous spectrum of relaxation time

The generalized Maxwell model, represented as a Prony series is a discrete approximation of
the continuous spectrum of relaxation H(τ). The standard discretization method starts with
the discretization of the time axis into a finite set of instants (τi), separated by equidistant in-
tervals on the logarithmic scale. Then, the associated elastic modulus is computed using the

formula Ei = H(τi) ln(
√

τi+1
τi−1

) and leads to the complete Prony series (τi,Ei), i = 1, . . . , n,

with n the number of viscoelastic elements of the model. The associated viscosity is de-
fined as the ratio of elastic moduli and characteristic time, that is, ηi = Ei/τi . A complete
description of the method is given, for example, in Baumgaertel and Winter (1992).

The method discussed next is based on the general remark that a continuous function
can be approximated by a staircase function of variables widths (see Kurtz et al. 2004). The
method will compute the set relaxation times τi based on a nonlinear optimization method
minimizing the integral distance between the continuous relaxation function and its staircase
approximation. A detailed presentation of the method is given in Jalocha et al. (2015a).

The discretized spectrum, represented as a staircase function S(τ) with n elements (see
Fig. 13), is expressed as

S(τ) =
n∑

i=1

H(τi)U(ti−1,ti )(τ ) (24)
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Fig. 13 An example of
continuous spectrum of
relaxation time H(τ) and a
staircase function S(τ).
Computation principle of τi

with τi = ti−1+ti
2 and

U(ti−1, ti) =
{

1 if ti−1 ≤ τ ≤ ti ,

0 otherwise,

also denoted as the unit box function. The relative distance between the continuous kernel
and the discretized models, H(τ) and R, respectively, is given by the formula

R = ‖ ∫ τc2
τc1

H(τ) − S(τ) dτ‖
‖ ∫ τc2

τc1
H(τ)dτ‖ . (25)

The optimal distribution of the relaxation times τi is defined in terms of the endpoints of
each unit box function τi = ti−1+ti

2 , i = 1, . . . , n, for given n. Moreover, it will minimize the
residual function R. The end points of the time series t0 and tn are supposed to be a priori
chosen. See Fig. 13 for a schematic view.
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