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This paper addresses an identification problem for a linear elastic anisotropic body. We suppose that we can 
measure the displacement distribution on the boundary of an elastic body induced by a known applied static 
load. This represents a partial knowledge of the Dirichlet to Neumann data map. From such displacement- 
force boundary data pairs we reconstruct the interior distribution of the elastic moduli by minimizing an 
error-functional based on the constitutive equation. The decomposition of this error-functional using 
'eigenelastic moduli' and 'eigentensors' will indicate the limitation of identification in the anisotropic case 
and will be the key point in the process of minimization. Numerical results for cubic material symmetry are 
finally used to validate the feasibility of the proposed method. 

KEY WORDS: Elastic moduli, boundary measurements, error on constitutive law 

1 INTRODUCTION 

The mechanical behavior of structures is governed by three different types of equations. 
Two of them derive from general laws of nature, the equations of dynamics and of 
kinematics, and one characterizes the mechanical properties of the material considered, 
the constitutive law. 

Provided the first two equations, one of the problems in solid mechanics is therefore 
the identification of the constitutive law. The identification is usually accomplished 
in two steps. First the nature of the constitutive law: elastic, elasto-plastic, etc. is 
chosen, and then the coefficients intervening in the equations are determined. The 
second step is generally based on the implicit hypothesis that the studied body is 
homogeneous. Consequently classical experiments and their interpretation fail for 
inhomogeneous bodies. 

The goal of this article is to explore a method to solve the identification problem for 
a linear elastic anisotropic body with an inhomogeneous interior distribution of the 
elastic moduli. We suppose that the displacement distribution on the boundary 
induced by a known applied static load is measurable. From such displacement-force 
boundary data pairs the interior distribution of the elastic moduli is reconstructed. This 
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294 A. CONSTANTINESCU 

is an inverse problem in linear elasticity. A complete review of inverse problems in 
mechanics is extensively presented by Bui in [5]. 

The numerical reconstruction presented here minimizes over kinematically and 
statically admissible fields an error-functional, the error on constitutive law. This 
functional was previously used in elasticity [lo, 111 for error-localization in structures. 
In order to change this property into an explicit identification property of the elastic 
moduli, the strain and stress tensor fields are decomposed on an well suited orthogonal 
basis. In the case of isotropy, presented in [2] ,  the projections of tensor fields on this 
basis were the spherical and deviatorical parts of the respective tensor field. For 
anisotropic elasticity, the case presented here, spherical and deviatorical parts are 
transformed into eigentensors, their more general counterparts. The eigentensors and 
the eigenelastic moduli are 'eigenvectors' respectively 'eigenvalues' for the linear elastic 
equation. These notions are comprehensively presented in [13, 141. 

The separation of the terms containing the eigenelastic moduli in the error on 
constitutive law, is a key point in our procedure because it permits the minimization of 
the error-functional with the eigenelastic moduli as explicit variables of the process, 
and will also define the limitations of this technique. 

The paper begins with a presentation of the mathematical identification problem 
(section 2). A non-identifiability example introduces a conjecture about identifiability 
for anisotropic materials (section 3). Then (section 4), the error on constitutive law and 
its decomposition using eigenelastic moduli and eigentensors is discussed. First a short 
review of the case of isotropic elasticity is examined and afterwards general anisotropic 
elasticity is introduced. This will also determine the method of reconstruction. In 
the end (section 5), some numerical examples are presented using synthetic data and 
the alternating direction implicit (ADI) method for minimization. The examples 
address the identification of an inclusion in a matrix for an aluminum-copper compos- 
ite. The material symmetry considered during the reconstruction procedure was cubic 
symmetry. 

2 THE IDENTIFICATION PROBLEM 

Let us consider an elastic body occupying in the reference configuration a regular 
domain R, with boundary aQ. Let u, E, T stand for the vector field of displacements, 
the tensor field of strain and the tensor field of stress respectively. 

In the present framework of small deformations and linear elasticity, assuming 
a stress-free initial state and no body forces, the governing equations on Q are: 

where Cdenotes the forth rank tensor of the elastic moduli. The elasticity tensor is 
supposed to be inhomogeneous, that is: C= C(x), XEQ. In the sequel dependence of 
x will not be shown explicitly unless needed for clarity. 
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IDENTIFICATION OF ELASTIC MODULI 295 

Without choosing for the moment any particular material symmetry' for C, we 
expect that the classical symmetry restrictions hold: 

These relations follow from the symmetry of the stress tensor, the symmetry of the 
strain tensor and the existence of an elastic potential, respectively [12]. The existence of 
the elastic potential also implies that Cis positive definite. 

With the above conditions, equations (1) form an elliptic system on R for the 
displacement u: 

Given the elasticity tensor Cand either of the following boundary conditions: 

imposed displacements: ul?, = 5, or 
imposed forces: Tnl,, = p (where n is the exterior unitary normal on dR), 

one has the classical well-posed boundary value problem of linear elasticity; this is the 
direct problem. 

If the elasticity tensor C i s  to be identified, an additional unknown is added to the 
problem without bringing an additional equation to it. One possibility to overcome this 
difficulty, is to supply more information by prescribing simultaneously displacements 
and forces over the whole boundary 80. 

This defines now an inverse problem, where C has to be identified from over-specified 
boundary conditions. The equations and boundary conditions are: 

div (CV u) = 0, ulan = 5, and Tnl,, = p. (4) 

3 EXISTENCE AND UNIQUENESS RESULTS 

It is natural to begin the investigation of this inverse problem with the question of 
identifiability: if for two elasticity tensors Cand L all boundary measurements are the 
same, must Cequal L ? 

The general answer for anisotropic elasticity is no, as will be proven by an example. 
However, if the investigation field is to be reduced to isotropic elasticity non- 
identifiability is eliminated and the answer is yes [8, 151. These results, as well as the 
numerical method developed in the sequel, conduct to a conjecture for partial 
identifiability in the general case of anisotropy, which will be formulated in the second 
part of this section. 

'We remind that in this paper isotropy, cubic symmetry, ..., anisotropy are understood with the conven- 
tions of yolid mechanics as local symmetry properties of C(x) in x&. 
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296 A. CONSTANTINESCU 

3.1 Example of non-identijability in anisotropic elasticity 

The example of non-identifiability is essentially based on the theorem of work and 
energy and the possibility of 'hiding' a change of variables in the elastic moduli. The 
construction stems from a similar example given by Kohn and Vogelius 171 for the 
non-identification of anisotropic electric conductivities. 

Let us consider two elasticity tensors L and C, and a diffeomorphism Y: R + R  
mapping R into itself and equal to the identity on the boundary aR (Y (x) = x, VxdR),  
the three related by the following relation: 

The preceding formula is similar to a change of variables, but it is obvious that 
the values and symmetries of the two elasticity tensors L and Care really shifted. The 
two bodies are therefore different, but it will be proven that their boundary measure- 
ments are always the same. 

The construction of L ,  Cand Y related by (5) is not trivial as in the electric case, 
because for given C and Y, L stemming from the relation (5) does not fulfill all the 
symmetry requirements of an elasticity tensor. The symmetries: 

are respected, but: 

are not generally verified. 
However, one can show that for a given Y there exist at least one elasticity tensor 

C such that the resulting L respects all the symmetry requirements of an elasticity 
tensor. Indeed, using (5), the relations (7) transform for a given Y, in each point of the 
domain, into a linear system for the elements of C: 

This gives a homogeneous linear system with 15 equations and 21 unknowns (the 
moduli Cijk,), which does always have a solution. Thus for a given Y and an elasticity 
tensor Csolution of (7), (5) gives an elasticity tensor L . 

The change of variable formula with y = Y (x) becomes by the use of (5): 

for all vector fields of displacements uand v. After integration by parts the last equation 
takes the following form: 
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IDENTIFICATION OF ELASTIC MODULI 297 

where T,(u) = C(x) V, uand TL (p )  = L (x) V, u. Using the fact that Y is the identify on 
the boundary and taking u a solution of the elastic problem with the elasticity tensor 
Cand v a virtual displacement field the preceding relation becomes: 

This relation implies that u O Y  is solution of an elastic problem with elasticity tensor 
L , because voY is still a virtual displacement field for any virtual displacement field 
v and a diffeomorphism Y. As a consequence there is a one-to-one correspondence 
between the solutions of problems of elasticity tensors C and L.  Moreover the 
corresponding solutions have the same global deformation energy and the same 
boundary values in displacements and forces: 

In other words, one can not identify anisotropic elastic moduli only by displacement 
force boundary measurements. The natural conjecture is that this is the only obstruc- 
tion to identifiability, exactly as in the electrical identification problem [17]. The 
conjecture proposed in the next part is a weaker result, justified by the variational 
method which will be proposed for the reconstruction. 

3.2 Uniqueness conjecture 

The only investigated elastic identification problems are related to the particular case 
of isotropic elasticity. Ikehata [8,9], and later Nakamura and Uhlmann [I51 proved 
that, provided certain regularity conditions on the functions are met, the knowledge of 
all possible displacement-force boundary data pairs2, i.e. (5, q), leads to a unique 
distribution of Lam& moduli (A, p). 

It is important to notice that the priori knowledge of the local material symmetry 
(isotropic elasticity) did eliminate the non-identifiability mentioned in the example 
before. In order to gain an intuition on the identifiability for the general anisotropic 

2The knowledge of all displacement-force boundary data pairs ( 5 ,  p)  is equivalent with the knowledge of 
the Dirichlet-to-Neumann data map. It is only for simplicity that this application was not introduced in the 
discussion of this paper 
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298 A. CONSTANTINESCU 

problem, it is interesting to point out the technique used in the proofs [8, 9, 151 for 
isotropic elasticity. Using the theorem on work and energy and a special class of 
displacement solutions one can relate the interior distribution of Lame moduli with the 
boundary measurements. These displacements transform the energy integral in a Spa- 
tial Fourier Transform of the elastic moduli. The identifiability of the Lame moduli 
results afterwards from the theorem of work and energy. 

In the numerical identification process [2], not Lame moduli, but bulk and shear 
modulus were used, because they permit a decomposition of the energy (in spherical 
and deviatorical parts) with good properties for the reconstruction process. The 
importance of this fact is hidden in isotropic elasticity, because we have a one-to-one 
mapping from Lame moduli to bulk and shear modulus. 

If one wants to preserve the properties of bulk and shear modulus in anisotropic 
elasticity, one has to pass to eigenelastic moduli [13, 141 (for a brief presentation see 
appendix A). These moduli are the eigenvalues of the elasticity tensor considered as 
a linear application. The eigentensors are the corresponding eigenvectors. In a tensorial 
notation the elasticity tensor becomes: 

6 

C = 2 c (k )  ~ ( ~ ' 8  N ( ~ )  
k =  1 

with c ( k )  the eigenelastic moduli and N(k) the eigentensors (second order symmetric 
tensors, with N(k).N(k) = 1). S, the minimum number of elastic moduli characterizing 
an anisotropic material can be written as: S = K + M + C(S < 21), with K (K < 6)  the 
number of distinct eigenelastic moduli, M (M < 12) the number of elasticity distribu- 
tors and C (C < 3) the number of coordinate orientation parameters [13]. The elasticity 
distributors are ratios of relative extensions in certain direction and might be consider- 
ed as generalization of Poisson ratios. They are completely determined by: tr N(k) and 
tr N(k)N(k)N(k),  k = 1,6. The coordinate orientation parameters depend directly of the 
choice of the coordinate system selected in order to describe material symmetry. 

If the energy is decomposed using eigenmoduli and eigentensors, eigenmoduli will 
explicitly appear in the terms of the decomposition, while elasticity distributors and 
coordinate orientation parameters will rest hidden in the eigentensors. 

Taking into account the role played by energy in the uniqueness results [8,15] and 
the before mentioned considerations about eigenelastic moduli it seems to be possible 
to formulate an identifiability result in the general case of anisotropy. For the moment, 
this is a conjecture and it will be stated without any proof: 

If the eigentensors N(k), k = 1, 6 (or equivalently the elasticity distributors and the 
coordinate orientation parameters) of an anisotropic elastic material are known in each 
interior point of the body, the knowledge of all displacement-force boundary data pairs (4, 
p) will determine the interior distribution of the eigenelastic moduli c(,,, k = 1, 6. 

4 A VARIATIONAL METHOD FOR RECONSTRUCTION 

The mathematical results presented in the preceding section demanded the knowledge 
all possible displacement-force boundary data pairs, which is an impossible demand 
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IDENTIFICATION OF ELASTIC MODULI 299 

from a practical point of view. One can reasonably only expect to know a finite number 
of data pairs at a finite number of measurement points. 

However for the simplicity of the variational formulation the knowledge of continu- 
ous vector fields over the whole boundary an (this could be achieved by interpolation) 
will be assumed. Therefore the measured data will be represented by N displacement- 
force boundary vector fields pairs: (&, qi) i= . 

The equations and boundary conditions governing this problem are mentioned in 
(I), and (4). Taking the constitutive law apart, the equilibrium and the geometrical 
equations can be grouped with the boundary conditions to form kinematically and 
statically admissible fields. These are sets of stresses, respectively strains defined as 
follows: 

K A ( 4 )  ={E(~U,E=; (VU+ v T u )  on 0 and u(,,= 4 on i30j 

SA (9)  = { T  ldiv T = 0 on t2 and Tnl,, = q on an) 

Therefore the practical identification problem can be stated as follows: 
Find the interior distribution C(x) of the elastic moduli and the N triplets of displace- 

ments, strain and stress jelds (ui (x) ,  E, (x), Ti(x)), , ,,, satisfying the constitutive 
equations on 

and belonging to the sets: 

This suggest to look for a solution by finding a best fit for the constitutive 
equation over the sets of admissible (i.e. symmetries, positive definiteness) elas- 
ticity tensor fields C, kinematically and statically admissible fields.One way to ac- 
complish this is to introduce a norm which measures the error on constitutive 
law (ECL): 

which is to be minimized over all arguments subject to the following constraints: 

Ei€KA(t i )  and T , E S A ( ~ , ) ,  (i = 1, N) (14) 

3C is symmetricand positive definite so C'IZ and C'I2 are well defined. The proof involves the second rank 
6-dimensional tensor representation for which the power function can be defined. 
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300 A. CONSTANTINESCU 

The choice of the mtegrand3 as 1 CY-ll' T - C112EJ2, Y rather than e.g. 1 C-' T - El2 or 
I T - CEI2, is jusiified by its physical dimension as a strain energy density. 

This error-functional was initially introduced by Ladeveze and Leguillon [lo] to 
study the finite element error. The ECL density gives an accurate spatial localization of 
the finite element error. This remarkable property has later been used by Ladeveze 
et al. [11] as a criterion to adjust the stiffness or the mass matrices of a finite element 
model in order to obtain similar frequencies and modal values on the finite element 
model and the real body. 

Later, in electrostatics, the error on constitutive law has been used to determine 
the interior distribution of the electrical conductivity from boundary voltage-flux 
measurements. This problem has recently received much attention from both view- 
points, mathematical [7] and technical [16]. A large survey of the existing bibliography 
on the subject can be found in [6, 7, I]. The electric and elastic problem are 
both governed by elliptic equations. Therefore the techniques applied to the scalar 
electrostatic inverse problem can be transposed to the vector elastic inverse problem. 

Returning to elasticity, the decomposition of I will be discussed in the sequel. 
Applying to the terms containing Ei Ti the theorem of work and energy, one obtains: 

As ti and pi are the known boundary displacements and forces, we remark that the 
only part in I which plays a role in the minimization process is: 

J T T )  T i C 1  T i + E i C ~ , d x  

The fact that J is a sum of stress and strain energy allows, with fixed C an indepen- 
dent and simple minimization in Ti and Ei respectively. It would a great benefit 
to have the same kind of explicit minimization in C, as in the electric counterpart of the 
error on the constitutive law [6,7]. This is not straightforward because in elasticity Cis 
a tensor. 

We shall furnish a technique to overcome this difficulty, first by explaining it in the 
case of isotropy and then extending it to the anisotropic case. 

4.1 Isotropic elasticity 

For the'isotropic elasticity every tensy A can be written as the sum of its spherical part 
113 (tr A)  l a n d  his deviatorical part A. The bulk and the shear moduli are taken as the 
two independent elastic constants, with: 

In this case J becomes: 
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IDENTIFICATION OF ELASTIC MODULI 

The partial minimization of J with respect to q and o has the following explicit 
solution: 

Cy' At' TJ2 Zr= Pi. fi 
v 2 ( X ) =  XEl ( t r ~ , ) ~  

and 0 2 ( x )  = Cyz I&@, 

There are two important properties which do permit the splitting of J: 

the spherical and deviatorical parts of a tensor are orthogonal in the sense that 
their doubly contracted tensor product is zero. 
the constitutive law reduces to a proportionality between the spherical (respective- 
ly deviatorical) part of stress and strain, with factor q (respectively a) :  

i ( t r T ) ~ = g ~ ( t r ~ ) ~  and f = w i  (17) 

4.2 Anisotropic elasticity 

These properties of the spherical and deviatorical parts are inherited in the general case 
of anisotropy by the eigentensors and eigenelastic moduli of the linear elastic constitut- 
ive law. The eigenvectors of the 3-dimensional forth-rank elasticity tensor C, consider- 
ed as a 6-dimensional second-rank tensor, are called eigentensors when projected back 
in the 3-dimensional tensor space. The corresponding eigenvalues are called eigenelas- 
tic moduli. An extended discussion of these concepts is presented in 1141. A concise 
definition and some examples are given in Appendix A. 

Ifwe denote by A(k), k = 1,6 the projections of a tensor A on the basis of eigentensors, 
and by c (k), k = 1,6 the correspondingeigenelasticmoduli of the elasticity tensor C, we 
have: 

A(k).A(j) = 0 if k # j, and 
the constitutive equations T = CE breaks in 6 uncoupled equations: 

We remark that there are at most 6 different eigenelastic moduli, because there are at 
most 6 different eigenvalues for a 6 dimensional second-rank tensor, and therefore 
K < 6. Using eigentensors and eigenelastic moduli the error on constitutive law I ,  
writes as follows: 
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302 A. CONSTANTINESCU 

The functional J, analogous to (16) becomes: 

and the explicit minimization of J in the directions of the eigenelastic moduli gives, 
similar to (4.1), an explicit expression for the optimal choice for the interior distribution 
of the eigenelastic moduli: 

The form of J defined by (20), can now be minimized applying the alternating 
direction implicit method (ADI) or the modified Newton (MN) method defined by 
Kohn and McKenney [6] in the electric identification problem. We give in Appendix 
B an overview of these two algorithms. 

4.3 Limitations of the reconstruction method 

The method presented in the section before is based mainly on the decomposition of the 
error on constitutive law using eigenelastic moduli and eigentensors. This permits an 
straightforward reconstruction of the eigenelastic moduli. Therefore this method 
applies especially in the cases of isotropic or cubic material symmetry, were the 
minimum number of elastic moduli can be directly related to the eigenelastic constants. 
In such a case, there are no elastic distributors and the eigentensors are independent of 
elastic moduli. For other material symmetries as orthotropic or tetragonal symmetry, 
where the number of elastic moduli exceeds the number of eigenelastic moduli, the 
eigentensors depend directly of the elastic moduli, and therefore some additional 
information should be provided in order to identify the interior distribution of all the 
moduli from displacement-force boundary measurements. 

5 TEST CALCULATIONS 

The numerical examples present the identification of an inclusion in a rectangular 
matrix (see Figures 2-5) for cubic elastic symmetry. The materials for the matrix and 
inclusion were aluminum (isotropic) and copper (cubic symmetry) with the following 
values for the elastic moduli (Young modulus, Poisson coefficient, respectively shear 
modulus): 

E,, = 66 x 109Pa v,, = 0.32 G - E ~ l  = 25 x 10' Pa 
A' - 2 (1 + vAl) 

E,, = 66 x lo9 Pa v,, = 0.42 G,, = 75 x lo9 Pa 
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IDENTIFICATION O F  ELASTIC MODULI 

CONCENTRATED FORCE CONCENTRATED MOMENT 

Figure 1 Concentrated forces and moments 

4 20 GPa 
1 30 
1 40 

50 
60 

1 70 
1 80 

Figure 2 Real (top) and reconstructed (botom) step inclusion (after 5 iterations) of the shear moduli G with 
10% noise on a 24 x 24 mesh. (See Colour Plate I) 

The corresponding values for the eigenelastic constants are given in Appendix A. 
In a first step, displacement-force boundary measurements were generated by direct 

elastic computations. For a given 'real' distribution of elastic moduli (see Figures 2-5) 
and a given boundary load (concentrated forces or moments, see Figure 1) a boundary 
displacement was computed. In a second step, synthetic data-pairs were injected in the 
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A. CONSTANTINESCU 

Figure 3 Real (top) and reconstructed (bottom) rectangular inclusion (after 10 iterations) of the Poisson 
coefficient v with no noise on a 24 x 24 mesh. (See Colour Plate 11) 

alternating direction implicit minimization scheme in order to reconstruct the elastic 
moduli. The data-pairs have also been perturbed by a white noise with a maximum 
amplitude of 10%. 

All the computations were programmed using the finite element oriented language 
CASTEM2000, on a HP 720 workstation. The domain, 1 unit x 1 unit was divided into 
n x n quadrangular linear elements. The finest mesh had 48 x 48 elements. For 
a 24 x 24 mesh, 96 direct computation were executed in 6 minutes. However 17 inverse 
iterations took for the same mesh, 5 hours on the same workstation. The overtime is 
justified by the internal transfers from eigenmoduli to the E, v,G form of elastic moduli 
in the computation of the rigidity. 

The reconstruction method considered the body with cubic symmetry. In order to 
avoid divergence, the local values of elastic moduli were forced to stay in a closed 
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IDENTIFICATION OF ELASTIC MODULI 

1 20 GPa 
30 
40 
50 
60 
70 
80 

Figure 4 Real (top) and reconstructed (bottom) ring-shaped inclusion (after 32 iterations) of the shear 
moduli G with no noise on a 24 x 24 mesh. (See CoIour Plate 111) 

interval by a min-max cutting at each iteration. The permitted values were 5 times 
greater (or less) than the initial guess for the moduli. This procedure enhanced the 
stability of the method to noise, compared to the previously published results for 
isotropic elasticity [2,4]. 

No other assumption has been made on the distribution of the elastic moduli. A set of 
constant distributions was tested as an initial guess for the reconstruction algorithm. 
The chosen values for the moduli varied up to 10% from real values of the moduli of 
aluminum or copper. However initial values did not influence the final result. 

The results presented in Figures 2-5 correspond to a copper inclusion in an 
aluminum matrix. They illustrate partly our general conclusions on the reconstruction 
method for cubic anisotropy: 

Shape, location and average level of the moduli are generally well reconstructed in 
the first 5-15 iterations (see Figure 5). The relative error and the errors in volume 
and moments reported to the real moduli depends of the shape of the inclusion, the 
distribution of the applied load, and the noise level. The encountered values for 
different errors vary between 0% and 20%. In pathological cases, as for example 
10% noise, errors can increase after the 10 iteration. 
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A. CONSTANTINESCU 

Figures Real (top) and reconstructed (bottom) corner inclusion (after 14 
coefficient v with no noise on a 24 x 24 mesh. (See Colour Plate IV) 

1 .29 
1 .31 

.33 

.35 
-37 
.39 

1 .41 
iterations) of the Poisson 

The relative error decreases below 10% for the Young modulus E and the 
Poisson ratio v and at 10-30% for the shear modulus G.  

The errors in volume or moment are not so important. Young modulus and 
Poisson coefficient are below 5% error, and the shear modulus is at 10-20% error 
after the first 5 iterations. Continuing the iterations brings Young moduli and 
Poisson coefficient at 2-3% and the shear modulus below 10% (see Figure 4). 

The fact that errors in volume and moment are lesser than relative errors implies 
that beforehand information, such as form of inclusions, or regularization would 
enhance the reconstruction. 
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If noise becomes important, 5 and 10% noise for the other tested forms, the 
reconstructed distributions become highly oscillating after 10 iteration and the scheme 
diverges. These images do not permit any identification of the real distribution. 
However the early 5-10 iterations provide even in this cases a fairly accurate localiz- 
ation and the form of the inclusion, even if the values of the elastic moduli are just 
a rough indication of the real value. This suggest that early stopping of the iterations in 
noisy cases gives a certain amount of important information. A combination of early 
stopping and regularization of the results might therefore enhance the accuracy of the 
identification. 

A comparison between concentrated forces and moments as applied loads shows 
that forces give a better reconstruction in the first (i.e. 5-8) iterations, whether 
moments are better after a larger number of iterations. 
A stabilizing effect on the oscillations of the reconstruction is observed when in the 
reconstruction one employs measurements corresponding to forces applied in the 
neighborhood of corners, compared with the case where no such measurement are 
employed. 
Errors didn't have a systematic increase or decrease for coarser or finer meshes. 
A possible explanation of this fact is that for finer meshes more measurements were 
used in the reconstruction. However for a n x n mesh, the number of measure- 
ments was proportional to n, and the number of unknown values was proportional 
to n2. 
The values of error showed that the Young modulus and the Poisson coefficient 
were better reconstructed than the shear modulus. Even though, shear modulus 
showed up to be more stable to noise, than the other two. 
The error on constitutive law has, as in the case of isotropic elasticity a great 
descent in the first 5-10 iterations, approaching afterwards a limiting value with 
little decrease. The limiting value depends essentially of the noise level in the 
boundary measurements. For high noise levels, 5% for the corner inclusion and 
10% for all inclusions the error on constitutive law fails to converge, and becomes 
oscillating after 10 iterations. Therefore this could be taken as a criterion to stop 
the reconstruction method. 

The numerical problems encountered are related on one side on the transfer passages 
between different forms of expression of the elastic moduli, and on the other side on the 
huge gradients in the deformation and stress fields obtained from the concentrated 
loads. Internal demands of the programming language demanded several interpolation 
passages from fields defined at the nodes to fields defined at the Gaussian interpolation 
points of the elements. It is the reason why we preferred the usage of linear elements 
instead of quadrangular elements, which can conduct to changes of the sign of the fields 
by interpolation. It is also obvious that this internal constraints of the programming 
contributed in the general error of the reconstruction. 

Some interesting conclusions on the elastic identification problem and the ECL are 
stemming from a comparison with the electric identification and the reconstruction 
performed by Kohn and Mckenney [ 6 ] .  

In a first approach one can compare similar images, obtained with different kinds of 
boundary loads and slightly different minimization methods. The elastic reconstruc- 
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308 A. CONSTANTINESCU 

tion used only concentrated forces and moments as boundary loads and only the IDA 
method for minimization, while the electrical one [6], used harmonic functions as 
boundary loads and both methods, IDA and MN, for minimization. 

In a second approach one can discuss about minimizing the ECL over isotropic or 
anisotropic materials. Considering that the material properties are expressed by the 
values of a second (electricity) or a forth order tensor (elasticity) one can remark that 
isotropic materials are completely determined by the eigenvalues of this tensor, 
whether anisotropic materials need more information for their characterisation. 

For the electrical problem, Kohn and Vogelius [7] showed that one can identify the 
second order conductivity tensor up to its eigenvalues, and that the ECL considered as 
a functional over anisotropic conductivities is the relaxation of the ELC considered as 
a functional over isotropic conductivities. This means for example that minimizing the 
ECL over isotropic conductivities and a fine mesh is in a certain sense equivalent to 
minimizing the ECL over anisotropic conductivities and a course mesh. The numerical 
results obtained using the ECL over anisotropic conductivities in order to identify an 
isotropic conductivity were reported to be "disastrous", by Kohn and McKenney [6]. 
This behavior was explained as a direct effect of the non-uniqueness of the identifica- 
tion of anisotropic conductivities. 

For the elastic problem the identification of the elasticity tensor up to its eigenvalues 
has been conjectured. To our knowledge there exists no rigourous proof of the 
equivalent relaxation statement. The statement should express that the ECL consider- 
ed over anisotropic elasticity tensors is the relaxation of the ECL considered over 
isotropic elasticity tensors. Even without a proof it should be obvious that permitting 
the minimisation over anisotropic materials, a class including isotropic materials, one 
also permits the minimum to be smaller. 

As a parallel to the electric problem one might therefore expect to encounter when 
identifying alminium, an isotropic material, by minimizing the ELC over elasticity 
tensors with cubic symetry, a special case of anisotropy, similar problems as the ones 
reported by Kohn and McKenney [6] in the electric problem. 

By extrapolation of the experience in the electric identification problem [6] one 
might expect to encounter difficulties when identifying aluminium, an isotropic ma- 
terial, by minimizing the ELC over elasticity tensors with cubic symetry, which is 
a special case of anisotropy. However this was not the case. A possible reason for this 
fact is that cubic symetry is still completly determined by the eigenvalues of the 
elasticity tensor, as in the isotropic case. As a consequence difficulties are related with 
the identification of more complex anisotropies, where the elasticity tensor is not 
completely determined by its eigenvalues. 

6 CONCLUSION 

Some aspects of an identification problem in anisotropic elasticity have been high- 
lighted. From the mathematical point of view, a uniqueness conjecture has been stated 
and a variational method for the reconstruction has been proposed. From the practical 
point of view promising numerical results have been obtained. A reasonably accurate 
reconstruction was computed after a modest number of iterations. The minimization 
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IDENTIFICATION OF ELASTIC MODULI 309 

process was simple and explicit. However when data was noisy, the picture degraded 
after sufficiently many'iterations. 

The method seems to be sufficiently stable, in other words insensitive to noise and 
interpolation errors in the data. The efficiency could probably enhanced if additional 
information (shape, location,. . .) is provided. Given accurate data from finite many 
different measurements a good approximation of the true coefficient has been obtained. 

The method should also be tested in other case of material anisotropy, where the 
number of elastic moduli exceeds the number of eigenelastic moduli (i.e. orthotropic, 
tetragonal symmetry). 
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A APPENDICES 

A.l Eigentensors and eigenelastic constants 

The constitutive law: 

is a linear application between 3-dimensional second-rank tensor spaces. We are 
interested in determining the strain states E, for which the tensors E and T have parallel 
directions. In order to determine these directions, we rewrite the constitutive law as an 
application between 6-dimensional vector spaces: 

with: 

where 2 denotes the image of the 3-dimensional tensor A in the 6-dimensional vector 
space through a vector-space isomorphism. This image is denoted as the second-rank 
tensor notation [13,14]. Parallel tensors are projected in parallel vectors and therefore 
our problem becomes a standard eigenvalue problem for a 6-dimensional second rank 
tensor: 
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1DENTIFICATION OF ELASTIC MODULI 311 

Since C i s  positive definite in a 6-dimensional vector space, we have K < 6 different 
eigenvalues c(,, and we can always chose an associated orthonormal base of eigenvec- 
tors &(k), k = 1, 6. We shall call el,, eigenelastic constants and the 3-dimensional 
second-rank tensor image N(k) of &( ), the eigentensors of our elastic problem. A(k) will 
denote the projections of the tensor A in the directions of eigentensors: 

If an eigenelastic moduli has an order of multiplicity i,A(k,k+l,...,k-i) will denote the 
projection of A on the subspace corresponding to that eigenelastic moduli. 

We present now the full expression of eigenelastic moduli and eigentensors for the 
case of cubic symmetry. Other cases are treated extensively in [14]. 

The cubic symmetry determined by 3 elastic moduli A,p and P related to 2'by: 

The first eigenelastic constant is c, = 3 A + 2 ( p  - p) related to the spherical part of the 
tensor: 

The eigentensor corresponding to the second eigenelastic constant c2 = 2 (p  - P) is one 
representing the distortion: 

A,, - i t r (A)  0 0 

A,,-itr(A) 0 

0 A,, - i t r  (A) 

The last eigentensor is one ofisochoric shearing and it is related to the third eigenelastic 
constant c, = 2p: 
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312 A. CONSTANTINESCU 

The values of the eigenelastic moduli for aluminum and copper corresponding to the 
values in (21) are: 

A.2 Two minimization algorithms 

The alternating direction implicit (ADI) method uses directly the fact that the minimiz- 
ation of J in (20) is straightforward in each of the directions c(,,, E,, Ti when all other 
variables are fixed. The eigenmoduli are given by (4.2) and the other two are equivalent 
to solving a well-defined direct elastic boundary value problem. Thus an iteration of the 
AD1 method consist of the following steps: 

1. with c(,, fixed (as determined by te previous step) solve the N Dirichlet problems 
(imposed displacements): 

2. with c(,, fixed (as determined by the previous step) solve the N Neumann problems 
(imposed forces): 

3. with (E,) ;=, determined by 1 and (Ti) YE, determined by 2, update c (,), k = 1,6 by 
minimizing: 

This method has the advantage of decreasing the value of I at every iteration, 
even if the convergence rate proves to be small as we approach to the minimum. 

The second algorithm is a modijied Newton (MN) method. At every step we 
approximate I with a convex quadratic form, which is minimized and we proceed 
for the next approximation. 

The detailed expressions for the approximations of I x I ,  + 61, + d210 are 
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We can develop further if we consider the relation: 

as a constraint. This gives to the first order in E(k) and T(k): 

Substituting these relations in the first quadratic approximation we obtain a new 
quadratic approximation: I x I ,  + 61; + 6'1; with the same I,, and: 

It is easy to see that the Hessian d2 I ; )  is not positive definite. We can regularize this 
\ 

term, as it was done in the electric case [ 6 ] .  With the regularization parameter 
0 < E 4 1 we have: 
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