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This paper addresses the identi®cation of the parameters of a nonlinear constitutive law
from indentation tests. The identi®cation problem is considered as a constrained
minimization problem and the gradient is computed using the adjoint state method, in
spite of the di�culties of the underlying contact problem. This provides a general
framework to perform optimization in some problems involving contact conditions and
nonlinear material behaviour. The case of a Maxwell viscoelastic and a Norton-Ho�
elastoviscoplastic constitutive law are treated extensively and a series of numerical
identi®cation examples are shown.
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1. INTRODUCTION

The indentation test is performed by pressing a punch into a material

sample. It was initialy used to evaluate the hardness of metals and is

now being considered as an e�cient non-destructive method for

determining mechanical characteristics of materials [19].

The constitutive law should be identi®ed from the knowledge of the

indentation curve (see Fig. 3), which represents the load applied on the

punch versus the penetration depth. The applicability of the
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indentation tests depends at this point on the precision and generality

of this identi®cation.

The identi®cation strategies currently used in the experiments are

based on semi-empirical formulas dedicated to given constitutive

behaviour: elasticity, perfect plasticity [12], power laws [11], . . . . These

formulas are based on elastoplastic ¯ow theories as presented in the

classical monograph of Tabor [18].

Only a few studies present a general method applicable to a large

class of constitutive behaviours, like de®ning the identi®cation as the

minimization of a cost functional.

Koguchi [14] identi®ed the elastic coe�cients of a layered half-space

indented with a sphere, minimizing a least squares distance between

measurements and computations using a closed form solution to the

direct problem.

More generally, for a non-linear elastic constitutive law and a least

squares cost functional Hasanov [7 ± 9] proved some existence results

and proposed a numerical procedure based on trial and error.

The previous methods are dedicated essentially to some elastoplastic

behaviours and the minimizations do not include gradient computa-

tions of the cost functional. Gradient computations are di�cult due to

the mathematical complexity of the contact description [10, 13],

appearing independently of the constitutive behaviour of the material.

As the direct problem is numerically costly, the knowledge of the

gradient could speed up the minimization algorithm.

The computation of a gradient of a least squares functional in the case

of linear elasticity has been given in [4, 20]. It has been shown that the

adjoint state method [15] can be extended to variational inequalities.

The e�ciency of the method has been illustrated by numerical examples

in the identi®cation of linear elastic moduli from indentation tests.

The goal of this paper is to show that the gradient computation by an

adjoint state method can be used in combination with a nonlinear

elastoviscoplastic constitutive law under the assumption of small strains

and rotations. Moreover, the method applies to any su�ciently regular

standard generalized constitutive law (for a presentation of these

behaviours, see [1, 6]). This ensures the generality of the approach.

As a consequence the parameters of nonlinear elastoviscoplastic

constitutive laws can be identi®ed from indentation tests by minimiz-

ing least squares functionals with gradient algorithms.
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The accuracy and robustness of the method is illustrated in this

paper through numerical examples for a Maxwell viscoelastic and a

Norton-Ho� viscoplastic constitutive law.

2. THE DIRECT PROBLEM �P�

Let us consider an axisymmetric body, with its section occupying in its

reference con®guration an open subset 
�R2 with smooth boundary ÿ

(see Fig. 1). The boundary is partioned in three parts ÿ�ÿD[ÿF[ÿC :

the part ÿD where displacements are imposed, the free surface ÿF, and

the surface ÿC where contact might occur. n and t denote the normal

and tangent vector to the boundary ÿ.

The axisymmetric hypothesis is taken in order to simplify the

presentation and the computational burden and does not restrict the

generality of the method.

The problem will be treated within the theory of small strains and

rotations. The validity of this hypothesis will be discussed later.

Therefore, let us denote respectively by u, " and s the vector ®eld of

displacements and the tensor ®elds of small strains and stresses.

The problem considered in the sequel is the indentation of the body


 by a rigid punch whose pro®le is characterized by the gap g. For a

FIGURE 1 The con®guration of the direct problem for a conical punch.
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complete presentation of contact computations see [13]. The contact is

considered without friction.

An indentation experiment is driven either by the vertical

displacement U or by the force F applied to the punch. The force F

can be expressed as integral of the contact pressure:

F �
Z

ÿC

n � s � n dÿ

An experiment provides an indentation curve (see Fig. 3), representing

a displacement-force history (Uexp, Fexp) over a given time interval

[0,T ].

In this work, we have always expressed the problem as driven by the

punch displacement. The governing equations can be written using:

� a time continous expression, where the intervening quantities are the

velocities of the ®elds, or

� a time discretized expression, where the intervening quantities are

small increments of the ®elds between two time steps.0

Describing contact conditions using velocities of the ®elds is a

complicated task demanding care in the choice of the functional spaces

of the mathematical formulations [13]. Therefore the time discretized

expression, which permits to avoid some of these di�culties, will be

used in this paper.

2.1. Constitutive Law

A standard generalized material without work hardening [6] is

considered here. This constitutive behaviour is completely determined

by the elasticity tensor S(c) and by the pseudo-potential of dissipation

���(s, c). The later is supposed to be twice di�erentiable with

respect to s. c is the vector of the material parameters characterizing

the material behaviour (Young's modulus, elasticity limit, . . .).

2.1.1. Time Continuous Expression

In a time continuous description, the constitutive law is expressed by

the classical set of equations:
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"� _u� � S�c� : _s� _"p �1�

_"p � @��s; c�
@s

�2�

where the dot . denotes the time derivative and "p is the viscoplastic

strain.

2.1.2. Time Discretized Expression

In a time discretization, the previous equations are expressed as

"��ui� � S : �si ��"p
i �3�

�"p
i �

@��si; c�
@s

�t �4�

Examples The following classical constitutive laws can be expressed

under this formalism:

� The Maxwell viscoelastic material : the pseudo potential � is given

by �(si, c)� (1/2)si : M : si where M is a fourth order tensor. The

plastic strain increment is determined by : �"p
i �M : si�t.

� The Norton-Ho� viscoplastic material: the pseudo potential � is

given by ��si; c� � �K=�m� 1��h��si�eq ÿ �Y�=K� im�1� where �Y is

the elasticity limit, h�i� is the positive part operator and (�)eq is the

equivalent Mises stress. The plastic strain increment is determined

by: �"p
i � �3=2�h���i�eq ÿ �Y�=Kim��~si=��i�eq��t; ~si is the deviator

of si.0

2.2. Equations of the Direct Problem �P�
The governing equations of the direct problem consist of the

equilibrium and constitutive equations, the boundary and contact

conditions and a set of initial values. The contact conditions on ÿC are

expressed using the Lagrange multipliers pi2N, where N� {q2 (H1/

2(ÿC ))
0jq� 0} is a closed convex set and (H1/2 (ÿC ))

0 denotes the dual

of H1/2(ÿC ) (see [13]).

The punch is driven by its vertical displacement Ui at time ti. At the

same moment, the gap gi between the surface ÿC and the punch is

expressed by gi � g� Ui ÿ un
i .
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Equilibrium and Constitutive Equation in V

div��si� � 0 �5�

"��ui� � S : �si � @��si; c�
@s

�t �6�

Boundary Conditions

�si � n � 0 on ÿF �7�
�ui � 0 on ÿD �8�

Contact Conditions

��un
i ÿ gi ÿ�Ui��qÿ pi�1� � 0 8q2N �9�

��nn
i � �si � n � n � �pi �10�

��nt
i � ��si � nÿ��nn

i � n � t � 0 �11�

Initial Conditions

s0 � 0 in 
 �12�
u0 � 0 on 
 �13�

"p
0 � n � 0 on 
 �14�

�15�

3. THE INVERSE PROBLEM �Pÿ1�

In the present inverse problem, one wants to identify the parameters of

the material behaviour c from the knowledge of the indentation curve

(Uexp, Fexp). c is supposed to evaluate in a closed convex Q of Rn

(n� 2).

This inverse problem can be expressed as a minimization problem of

a well chosen cost functional. Since the direct problem is driven by the
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imposed displacement of the punch U, it is natural to express the cost

functional as a function of the resultant force F. A possible

formulation of the inverse problem �Pÿ1� is:
Find c2Q minimizing

J �c� � 1

2

XI

i�0
�Fcomp

i �c� ÿ F
exp
i �2

� 1

2

XI

i�0

�Z
ÿC

pi�c�dÿÿ F
exp
i

�2
�16�

where, Fcomp is the computed resultant force from the direct problem

driven by Uexp.

One can remark that the cost functional J depends implicitly on the

material parameters c through the intermediate of the pressure

distribution p. The resolution of the direct problem �P� permits the

determination of the Lagrange multiplier pi and then the calculation of

Fcalc
i . In consequence, this minimization problem can be considered as

a constrained one, the constraint being the resolution of �P�.
In the case of an elastoplastic constitutive law existence results for

this problem are given in [7 ± 9].

3.1. Resolution

The resolution of a constrained minimization problem is equivalent,

under some regularity conditions, to ®nding the saddle point of a

Lagrangian functional L. In the case of the inverse problem �Pÿ1�, the
Lagrangian L is introduced as a sum between the cost functional and a

variational formulation of the direct problem �P�.
For each variable of the direct problem, an adjoint variable, denoted

by a ? superscript, is introduced. These adjoint variables are the

Lagrange multipliers of the constraints, the equations of the direct

problem.

According to the optimal control theory, all direct and adjoint

variables will be considered mutually independent. The relationships

between them will be recovered from the stationarity conditions of the

Lagrangian L, characterizing the saddle point.

The Lagrangian functional has the following form:
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L�u;s; p; u?;s?; p?; c� �
XI

i�0
Li�ui;si; pi; u

?
i ;s

?
i ; p

?
i ; c� �17�

where

Li�ui;si; pi; u
?
i ;s

?
i ; p

?
i �

� 1

2

�Z
ÿC

pidÿÿ F
exp
i

�2

�
Z




div��si� � u?i d


ÿ
Z

ÿF

�si � n � u?i dÿ�
Z

ÿD

�ui � s?
i � ndÿ

�
Z

ÿC

��un
i ÿ�Ui ÿ g�i� � p?i dÿÿ

Z



�"��ui� ÿ S : �si

ÿ @��si; c�
@s

�t� : s?
i d


ÿ
Z

ÿC

��pi ÿ�snn
i � � un?

i dÿ

ÿ
Z

ÿC

��nt
i � ut?

i dÿ

and

� ui, u
?
i 2�H1�
��2

� si, s?
i 2�L2�
��4

� pi, p?i 2Ni � fq2�H1=2�0�ÿC�jq � 0 on ÿC=ÿCi
g and where ÿCi

is the

e�ective contact surface at time ti.0

The complex form of this Lagrangian does not permit to draw any

conclusions with regard to the existence and uniqueness of its saddle

point. Nevertheless, necessary conditions of stationarity can be

formally written in order to characterize this eventual saddle point.

The stationarity conditions of L are given by the following

expressions:

XI

i�0

�
@Li

@u
; dwi

�
� 0 8dwi 2�H1�
��2 �18�

XI

i�0

�
@Li

@s
; dti

�
� 0 8dti 2�L2�
��4 �19�
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XI

i�0

�
@Li

@p
; dqi

�
� 0 8dqi 2Ni �20�

XI

i�0

�
@Li

@u?
; dwi

�
� 0 8dwi 2�H1�
��2 �21�

XI

i�0

�
@Li

@s?
; dti

�
� 0 8dti 2�L2�
��4 �22�

XI

i�0

�
@Li

@p?
; dqi

�
� 0 8dqi 2Ni �23�

XI

i�0

�
@Li

@c
; dÿ c

�
� 0 8d2Q �24�

where h�, �i represents in each equation the duality pairing for the

corresponding functional spaces.

Calculating the derivatives with respect to the adjoint variables

(Eqs. (21) ± (23)) leads to the set of equations:

div��si� � 0 in 
 �25�

"��ui� ÿ S : �si ÿ @��si; c�
@s

�t � 0 in 
 �26�

�si � n � 0 on ÿF �27�

�ui � 0 on ÿD �28�

�un
i ÿ gi ÿ�Ui � 0

�snn
i � �pi

��nt
i � 0

9=;on ÿCi
�29�

The preceding calculation leads in classical Lagrangian theory to the

equations of the direct problem. In the present case, opposite to the

classical frame, the equations do not represent exactly the direct

problem. However, if (u, s, p) are the solutions to �P�, they obviously

verify the above relations.
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The derivation of L with respect to the direct variables (Eqs. (18) ±

(20)) and series of calculations: spatial integration by parts and use of

the ®rst order approximation fi ��gi� f i�1 � gi�1ÿ f i � giÿ�fi � gi, gives
the following set of equations:

div��si� � 0 in 
 �30�

"��u?i � � S : �s?
i ÿ

@2��si; c�
@s2

�t : s?
i in 
 �31�

�s?
i � n � 0 on ÿF �32�

�u?i � 0 on ÿD �33�

�un?
i � �Fcalc

i �c� ÿ F
exp
i �

��nn?
i � �p?i

��nt?
i � 0

9=;on ÿCi
�34�

and the following ®nal conditions at time T

div�s?
I � � 0 in 
 �35�

"��u?I � � S : ��s?
I � in 
 �36�

u?I � 0 on ÿD �37�

s?
I � n � 0 on ÿF �38�

un?
i � 0

p?I � �nn?
I

�
on ÿC �39�

This set of equations and the ®nal conditions de®ne a well-posed

incremental problem with Dirichlet conditions on a part of the

boundary and will be called the adjoint problem �P?�.
The preceding calculations can be summarized as:

3.2. Stationarity Result

If (u, s, p) and (u?, s?, p?) are respectively the solutions to the

incremental direct and adjoint problem �P� and �P ?�, then the

Conditions (18) ± (23) of stationarity of the Lagrangian L are veri®ed.
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Moreover, if (u, s, p) are the solutions to �P�, one can notice that

the Lagrangian L is reduced to the cost functional J . Together with
the expression of stationarity conditions (24) this implies that:

3.3. Gradient Computation

If (u, s, p) and (u?, s?, p?) are respectively the solutions to the

incremental direct problem �P� and to the incremental adjoint

problem �P��, then the gradient of the cost functional J is given by

rcJ �
XI

i�0

�Z



�si :
@S

@c
: s?

i �
@2�

@s@c
�t : s?

i d


�
�40�

Some remarks can be done about the preceeding results:

� The adjoint problem is not a contact problem. Its loading is a

Dirichlet conditions (imposed displacement) on ÿCi
, the e�ective

contact surface of the direct problem.

� The adjoint problem is a time dependent system of partial

di�erential equations on [0,T] and a ®nal condition given by a

well-posed elasticity problem. Therefore the adjoint problem will be

integrated from T to 0 in the reversed time.

� The adjoint constitutive law is viscoelastic considered in the reversed

time i0  Iÿ i:
"��u?i0 � � S : �s?

i0 � R : s?
i0�t

where R is the forth order tensor:

R � @
2��si0 ; c�
@s2

i0

The pseudo potential � has to be twice di�erentiable to ensure the

existence of the adjoint state (For example in the Norton-Ho�

constitutive law, m> 1 is needed). From a numerical point of view,

this leads to a linear problem at each time step and therefore a rapid

integration.

� The parameters to the adjoint constitutive law depend on the

parameters of the direct constitutive law, but also on the solution of
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the direct problem. Hence the solution to the adjoint problem is

implicitly dependent on the solution of the direct problem.

� The equations of the adjoint problem in the reversed time describe a

linear viscoelastic problem with Dirichlet boundary conditions and

initial conditions, and therefore well posed.

� This method allows the computation of the gradient of the cost

functional J using the solutions to the direct and adjoint problems,

independently of the number of parameters involved. A rapid

evaluation of the computational burden shows that a gradient

calculation takes �1.5 the time for solving the direct problem due to

the simplicity of the adjoint behaviour and the elimination of the

contact condition. This is extremely interesting for problems with a

large number of parameters.However, the interventionof the solution

to the direct problem in the resolution of the adjoint problem,

demands large memory space for keeping track of all the ®elds.0

4. NUMERICAL EXAMPLE FOR THE MAXWELL

EQUATION

In order to illustrate the presented method, let us consider the

identi®cation of the parameters of a Maxwell viscoelastic material:

"��ui� � S : �si ��"p
i where �"p

i �M : si�t �41�

Sijkl � 1

E
��1� ���ik�jl ÿ ��kl�ij� �42�

Mijkl � 1

�
��ik�jl ÿ 1

3
�kl�ij� �43�

where E, �, � denote respectively the Young's modulus, the Poisson

coe�cient and the viscosity. The tensor M computes the deviatoric

part of stress.

As explained before, this constitutive law enters the formalism of the

standard generalized materials without work-hardening.

The identi®cation problem consists of determining E and � from an

indentation curve (Uexp, Fexp). The Poisson coe�cient was considered

as known, but could be identi®ed in the same way.
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In this work the indentation curve is obtained from numerical

experiments as explained in the sequel.

4.1. Direct Calculations

The experiment simulations have been realized through ®nite elements

computations using the CASTEM2000 code [3]. The body 
 was a

cylinder with radius 10mm and height 10mm and the punch was a

rigid cone with a 68� half angle at the apex. The mesh of the body had

20� 20 quadratic elements. At this coarness the solution of the direct

problem is independent of the mesh size.

The indentation process has been displacement controlled and

consists of a loading, maintain and unloading parts (see Fig. 2). A

typical indentation curve is represented on Figure 3.

The hypothesis of small strains and rotations has been the keypoint

in the development of the calculations of the adjoint state method. It

was therefore important to validate this assumption. A series of direct

computations have been done in three di�erent cases: small strain and

rotations, large strains and large strains and rotations, with E� 2

104MPa and �� 3 104MPa � s. The results show a good agreement of

the indentation curves (see Fig. 3). It is important to remark that the

small di�erence is due in part to the simple constitutive law assumed.

This hypothesis should be checked before applying this method for

other constitutive laws.

4.2. Identi®cation Procedure

The identi®cation procedure presented next is based on minimization

of the cost functional J (16) using a gradient descent method. The

``experimental'' curve was simulated by ®nite element calculations as

stated in the previous section with E� 2 104MPa, �� 0.3, �� 3

104MPa � s.
The gradient has been computed using the adjoint state method with

the expression (40) after solving the direct problem �P� and the adjoint

problem �P ?�. In the case of the Maxwell material behaviour the

adjoint behaviour is also a Maxwell law, which we might call a self

adjoint material behaviour. This is due to the quadratic viscoelastic

potential �.
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The numerical gradient computation by the adjoint method has

been compared with a computation by ®nite di�erences. The results

for several points and directions showed less than 10% di�erence

between the two methods.

The minimization algorithm was the quasi Newton BFGS algorithm

with a line search obeying the Armijo selection rule [5].

The shape of the cost functional has been plotted in Figure 4 from a

series of direct computations. We remark a smooth ®at valley which

should not pose special di�culties to the identi®cation.

4.3. Identi®cation Using Exact Measurements

A ®rst series of identi®cations have been performed with exact

measurements. The results for di�erent initial points are presented in

Table I. The starting values for the algorithm have been at maximum 5

times smaller or 3 times larger than the real values. In all cases the ®nal

FIGURE 2 Loading history of the indentor.
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FIGURE 3 Indentation curve for small and large strains for the Maxwell material.

FIGURE 4 Shape of the cost functional J for the Maxwell material.
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value was less than 0.02% from the value to be identi®ed, after about

15 iterations. Some typical evolution path of the algorithm on the

isovalues of the cost functional are plotted in Figure 5.

Figure 6 shows the real indentation curve in comparison to the

TABLE I Identi®cation results with exact measurements for the Maxwell
material for the reference values Eref� 20000. MPa, �ref� 30000. MPa � s
(Eini, �ini) (E®nal, �®nal)
(MPa, MPa � s) (MPa, MPa � s)
(4000., 70000.) (20002., 30004.)
(60000., 10000.) (20002., 30009.)
(10000., 5000.) (20002., 30006.)
(60000., 90000.) (19999., 29999.)

FIGURE 5 Path of the algorithm (exact measurements) for the Maxwell material.
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initial and converged indentation curve. In terms of cost functional the

algorithm brought its value from � 108 to � 101.

4.4. Identi®cation Using Measurements with Random Error

In order to check the robustness of the identi®cation procedure the

simulated measurements have been perturbed by a 10% random noise.

The results of several identi®cations using perturbed measurement

data are presented in Table II. The ®rst pair and the last pair of data

are results coming from identi®cation with di�erent starting points but

TABLE II Identi®cation results from measurements with random error for the
Maxwell material

(Eini, �ini) (E®nal, �®nal)
(MPa, MPa � s) (MPa, MPa � s)
(4000., 70000.) (20580., 30490.)
(10000., 5000.) (20611., 30457.)
(60000., 10000.) (19509., 29130.)
(60000., 90000.) (19509., 29136.)

FIGURE 6 Evolution of the indentation curve with exact measurements.
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with the same measurement perturbation. The identi®ed values lie at

2.5% from the real values for both measurement perturbations.

The path of the algorithm on the isovalues of the perturbed cost

functional is shown on Figure 7.

Figure 8 shows the real indentation curve (E� 2 104MPa, �� 3

104MPa � s) in comparison to the initial (E� 6104MPa, �� 9104MPa �
s) and converged (E� 1.95 104MPa, �� 2.91 104MPa � 108 to � 104.

This is minimal value of the cost functional where the algorithm could

descent. However, there is a good agreement between the experimental

and identi®ed indentation curve.

FIGURE 7 Path of the algorithm (measurements with random error) for the Maxwell
material.

18 A. CONSTANTINESCU AND N. TARDIEU

I210T001008 . 210
T001008d.210



5. NUMERICAL EXAMPLE FOR THE NORTON-HOFF

MATERIAL

We recall that the viscoplastic Norton-Ho� constitutive law is

expressed as:

"��ui� � S : �si ��"p
i where �"p

i �M : si�t �44�

Sijkl � 1

E
��1� ���ik�jl ÿ ��kl�ij� �45�

�"p
i �

3

2

� ��i�eq ÿ �Y

K

�m

�

~si

��i�eq
�t �46�

As explained before, this constitutive law enters the formalism of the

standard generalized materials without work-hardening. In compar-

aison with the Maxwell viscoelasticity two di�culties have been

adjoined a yield limit and a nonlinearity represented by the power law.

FIGURE 8 Evolution of the indentation curve from measurements with random error
for the Maxwell material.
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5.1. Direct Calculations

The direct computations have been programmed in the same frame-

work as previously presented and similar meshes and loading histories

(Fig. 2) have been used. The integration of the direct constitutive law

was performed using a build in forward Euler scheme (implicit) under

the hypothesis of small strains.

5.2. Identi®cation Procedure

The identi®cation procedure is based on minimization of the cost

functional J (16) using the same algorithm as before.

The ``experimental'' curve was simulated by ®nite element calcula-

tions with E� 105MPa, �� 0.3, K� 1500MPa � s1/m, m� 5,

�Y� 500MPa.

The gradient has been computed using the adjoint state method with

the expression (40) after solving the direct problem �P� and the adjoint

problem �P?�.
Opposite to the Maxwell case, the adjoint constitutive law is

di�erent from the direct one and can be expressed as:

"��u�i � � S : �s�i �M : s�i �47�
where:

M � ÿ 3

2

� ��i�eq ÿ �Y

K

�m

�

1

�si�eq
J

� ~si 
 ~si

�si�2eq
9

4

�� ��i�eq ÿ �Y

K

�m

�

1

�si�2eq
ÿm

K

� ��i�eq ÿ �Y

K

�mÿ1

�

�
Jijkl � ��ik�jl ÿ 1

3
�kl�ij�

This formula already expresses a forward Euler integration scheme

which has been programmed as such in the code.

One can remark that the adjoint constitutive law is a viscoelastic,

nevertheless anisotropic and nonhomogenous.
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5.3. Identi®cation Using Exact Measurements

A series of identi®cations have been performed with exact measure-

ments on two meshes with di�erent coarsness (tests 1 ± 5 and 6 ± 8) and

the results for di�erent initial points are presented in Table III.

The starting values for the identi®cation are in this case just � 30%

from the real values. This choice has been motivated by the slow

convergence of the direct computation for the Norton-Ho� material.

One can remark that the parameters have been identi®ed within

� 5% of the real values for tests 1, 2, 7 and 8. In the other cases, only

the Young's modulus E and the viscosity K have been reasonably

identi®yed (1% error for E and 1ÿ10% for K ). The power coe�cient

m and the yield limit �Y are in these cases still far away from the real

values. However the ®nal computed indentation curves are always

superposed with the experimental curve, meaning that the minimiza-

tion of the geometrical distance between them has been achived.

The initial and ®nal parameters in tests 5 present a peculiar

property. As can be seen in Figure 9, both parameters sets produce the

same loading curve as the experimental one. The best identi®ed

parameter in this case, was the Young's modulus. This result is a new

con®rmation of the importance of the unloading part of the

experimental curve in the identi®cation of the Young's modulus as

already observed in a series of previous papers [16, 17].

The previous results are a direct consequence of the poor sensitivity

of the cost functional in this region of the parameter space. In order to

illustrate this property we have plotted the values of the cost

TABLE III Identi®cation results with exact measurements for the Norton-Ho�
material for the reference values Eref� 100000. MPa, Kref� 1500. MPa. s1/5 mref� 5.
and �Y ref� 500. MPa

Test Eini Kini mini �Y ini E ®nal K®nal m®nal �Y ®nal

MPa (MPa � s)1/m MPa MPa (MPa � s)1/m MPa

1 130000. 800. 2. 1000. 99664.3 1533.36 5.38417 446.414
2 150000. 1000. 3. 1000. 100228.0 1524.64 5.00296 491.795
3 150000. 2000. 3. 200. 99429.3 1598.24 6.18529 343.533
4 150000. 2000. 8. 1000. 99288.9 1657.20 6.98908 246.959
5 70000. 2000. 8. 200. 99126.5 1682.47 6.94556 238.366

6 70000. 3000. 8. 250. 100598.0 1451.36 4.24316 602.651
7 70000. 1000. 3. 250. 99630.1 1521.18 4.94161 497.229
8 150000. 1000. 3. 250. 99778.0 1516.32 5.28676 464.255
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FIGURE 9 Evolution of the indentation curve with exact measurements for the
Norton-Ho� material.
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functional J on a plane of the parameter space determined by the

following points:

� the reference point: c� (100000, 1500, 5, 500)

� the initial point in test 5: c� (70000, 2000, 8, 200)

� the ®nal point in test 5: c� (99126, 1682, 6.95, 238)0

Using a coordinate parametrization given by two orthogonal

vectors, the parameter sets in this plane can be generated using the

following formula:

E � 100000ÿ 1315:4aÿ 80362:7b

K � 1500� 273:917a� 714:075b

m � 5� 2:93482a� 1:08013b

�y � 500ÿ 394:32a� 142:208b

�48�

where a, b are two real parameters.

In Figure 11 we represented the values of the cost functional for the

parameter sets generated with (a, b)2 [ÿ1, 1]� [ÿ0.5, 0.5]. Two

FIGURE 10 Convergence of the normalized parameters for the Norton-Ho� material
(test 7).
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extreme values (141200, 923, 2.11, 744), i.e., (a, b)� (ÿ1, ÿ0.5) and
(58500, 2131, 8.47, 176), i.e., (a, b)� (1, 0.5) show how spanned are the

values covered in this region. The cost functional presents a deep and

long valley where it is very di�cult to converge to the minimum. A

close inspection of the obtained values show however that there is a

unique minimum in this region.

6. CONCLUSION

The identi®cation of the parameters of a standard generalized non

hardening constitutive law from indentation tests was presented. It has

been shown that the adjoint state method can be extended to contact

problems using Lagrange multipliers.

The e�ciency of the method has been studied on numerical

examples for an indentation problem in the case of Maxwell viscoelatic

and Norton-Ho� viscoplastic constitutive laws.

Even if no precise proof of uniqueness and stability has been

provided, one can remark that for the Maxwell material the cost

functional is almost convex and presents a unique minimum (see

Fig. 4). For other values of the material parameters c� (E, �) we have

obtained similar shapes of the cost functional. It is important to state

FIGURE 11 The values of the cost functional J on the ``critical'' plane (see Eq. (??))
of the parameter space.
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that for the Maxwell material identi®cations started with completely

di�erent values did converge to the same parameter set. All these

remarks suggest that this inverse identi®cation problem has a unique

solution.

In the case of the Norton-Ho� material the numerical examples

presented a lack of sensitivity of the cost functional with regards to

certain parameters. However the Young moduli and the viscosity are

well identi®ed. In spite of the lack of sensitivity it seems that the

identi®cation problem has a unique minimum.

In order to improve the presented solution, di�erent possibilities are

available: to increase the number of experimental measures for

example by varying the indentation rate, to change the expression of

the cost functional like the error on constitutive law or crossed

di�erences (J � �Uexp ÿ Ucomp� � �Fcomp ÿ Fexp� see [20]). These

questions do not depreciate the presented approach as the technique

for the gradient computations remains valid. They rather demand a

study of the strategy of identi®cation and of the identi®ability of a

certain family of constitutive laws.
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