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This paper is concerned with a semi-analytical approach to the solution of the axisymmetric indentation
problem for a multilayered elastic half-space. The stress and displacement fields for each layer and the
substrate are derived in closed form by using the Papkovich–Neuber potentials and the Hankel transform.
The bonded or sliding interface conditions between the sub-layers are handled by the use of the appro-
priate transfer matrix, and then the mixed boundary value problem is reduced to a Fredholm integral
equation. Symbolic and numerical computations of the solution are implemented in the symbolic soft-
ware Mathematica in the form of a fast and efficient numerical algorithm, allowing rapid determination
of the load–displacement curves and composite elastic properties for an arbitrary rigid indenter shape. A
series of results for different indenters (flat, conical, spherical and blunted conical punch shapes) and dif-
ferent multilayered composites is presented and discussed.

The complete set of symbolic and numerical computations are provided as supplementary resources
with the paper.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Thin films and surface coatings are of a great importance in the
context of many engineering applications, e.g. for the improvement
of resistance to wear, increasing the strength and toughness of
structural surfaces and the protection of solids in high temperature
or corrosive environments. Multilayered or continuously graded
materials offer the potential for further progress in optimized de-
sign of surface coatings. For the purpose of design optimization,
the knowledge of properties of such materials is crucial. Undoubt-
edly, indentation is the approach most widely used for the identi-
fication of thin film properties spanning the range of scales from
nanometer to macroscopic. The evaluation procedure is based on
the analysis of the indentation curve P–h representing the applied
load P on the indenter with respect to its penetration depth h dur-
ing the loading/unloading test. The simplest approach to the prob-
lem would be to find suitable laws that describe some parts of the
indentation curve, and then to extract the material properties as
fitting parameters. However, even in the presence of such analyti-
cal descriptions, the identification of material properties through
indentation analysis is a difficult inverse problem. As in most cases
of inverse analysis, the direct problem has to be addressed first.
The standard method used in the direct approach to evaluating
Young’s modulus of a homogeneous bulk substrate was initially
developed by Oliver and Pharr (1992) and improved later in Oliver
and Pharr (2004). They proposed a relationship between the initial
unloading slope of the P–h curve and the substrate’s Young’s mod-
ulus. The remaining parameters were obtained by a Finite Ele-
ments Analysis (FEA). Using the Oliver and Pharr framework, Dao
et al. (2001) found a complete set of explicit analytical functions
using dimensional analysis and then FEA. Those functions help
solving the direct problem, i.e. finding the parameters that describe
the loading/unloading slopes of the indentation curve. Also, these
functions can be used for the inverse analysis of the indentation
test. These procedures have been extended for extracting materials
properties of anisotropic solids (Delafargue and Ulm, 2004; Vlassak
and Nix, 1994; Swadener and Pharr, 2001; Vlassak et al., 2003).

For heterogeneous materials, some analytical solutions can be
found in literature. Giannakopoulos and Suresh (1997a,b) devel-
oped solutions for several indenter tips under the assumption that
the depth distribution of the substrate’s Young’s modulus follows a
power law or exponential law. Then Choi et al. (2008a,b) extended
this approach to plastically graded materials using a similar ap-
proach to that of Dao et al. (2001). Nevertheless, often no a priori
assumption can be made regarding the depth distribution of prop-
erties, and hence a multi-layer approach is necessary. Ke and Wang
(2006) developed semi-analytical solutions for the plane strain
problem using linear piecewise property distributions in each
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layer. However, the indentation problem is most often approxi-
mated as axisymmetric. For such problems some solutions have
also been documented in the literature, e.g. the elastic solution of
a homogenous layered half space with perfect interfacial bonding
under axisymmetrical compressive loading carried out by Li and
Chou (1997). Due to the complexity of the integrals involved in
the use of the Hankel transform, the elastic fields for the coating/
substrate system were obtained by a numerical inversion proce-
dure. A different method of solution for the indentation of a thin
film deposited on an elastic substrate and indented by an axisym-
metric rigid punch was presented by Yu et al. (1990). This ap-
proach used the method proposed by Lebedev and Uflyand
(1958) which results in the formulation of a Fredholm integral
equation. The merit of this method of analysis lies in its ease of
numerical implementation and the possibility of its application
to a large range of different indenter tips. Fretigny and Chateaumi-
nois (2007) studied the problem with a constant piecewise distri-
bution of elastic parameters by adopting a matrix formalism.
They investigated the case of one layer over a substrate, but gave
directions on how to generalize the method of solution to multilay-
ered solids. Tang et al. (2008, 2009) studied experimentally and
numerically the elastic modulus of metal-ceramic nanolaminates
measured by axisymmetric nanoindentation. The elastic modulus
of the multilayer was obtained according to the method proposed
by Oliver and Pharr (1992). Recently, Korsunsky and Constantine-
scu (2009) used the technique of Yu et al. (1990) in order to study
the influence of punch tip sharpness on the interpretation of inden-
tation measurements for the layered elastic half-space. Perfectly
bonded or freely sliding boundary conditions between the film
and the substrate were taken into account. The authors considered
axisymmetric indenters with different tip shapes, namely, the flat
punch, spherical indenter, as well as conical and blunted conical
indenters.

In this work, we consider the frictionless axisymmetric indenta-
tion of a multilayer lying on a semi-infinite elastic substrate. This
problem can be seen as the indentation of an elastically graded
material with constant piecewise distributions. Extending Korsun-
sky and Constantinescu’s (2009) approach for a single layer to an
arbitrary number of layers on a dissimilar substrate, we present a
symbolic/numerical method of solution of the direct problem for
several rigid indenter shapes. The use of symbolic computation
permits several goals to be achieved, namely: (i) to verify the accu-
racy of the closed form solutions and to eliminate coding errors, (ii)
to create a numerical code that performs the computation for n
layers, where the number n is not predefined. Compared to the Fi-
nite Element Method, this approach is not limited by the size of
elements that represent the thickness of the layers, and a better
parametric understanding of the deformation phenomena during
indentation becomes possible.
2. The multilayer coating indentation problem

Let us consider a multilayer composed of n layers deposited
upon a half-space and being indented by an axisymmetric rigid
punch as shown in Fig. 1. Both the layers and and the half-space
are assumed to be homogeneous with a linear isotropic elastic
behavior. The layers are indexed by i ¼ 1;n with increasing depth,
each characterized by thickness hi, shear modulus li and Poisson’s
ratio mi.

For the rigid, axially symmetric indenter, four different shapes
are considered next: the flat punch, the spherical cap, the sharp
conical indenter and the blunted conical indenter (see sketches
in Fig. 2).

The contact is considered to be frictionless and the problem is
treated under the assumption of small strains. Cylindrical coordi-
nates ðr; h; zÞ are used, with z > 0 pointing into the substrate, and
each problem posed in terms of (i) the elasticity equations for each
layer and the half space, (ii) the boundary conditions between lay-
ers, and (iii) the contact boundary conditions between the indenter
and the first layer.

The elastic displacement and stress fields will be expressed in
terms of the Papkovich–Neuber displacement potentials, given by
the harmonic vector and the scalar function Wj ¼ 0;0;Wj

� �
and

/j respectively. (For a complete presentation of the Papkovich–
Neuber potentials see, for example (Constantinescu and Korsunsky,
2007; Robert and W., 1999; Solomon, 1968)). The harmonicity of
the potentials insures that the equations of linear isotropic elastic-
ity are satisfied in each layer.

The elastic displacement and stress fields are given by:

2lju
j
r ¼ �/j

;r � zwj
;r ð1Þ

2lju
j
z ¼ kjw

j � /j
;z � zwj

;z ð2Þ
rj

zz ¼ 2ð1� mjÞwj
;z � /j

;zz � zwj
;zz ð3Þ

rj
rz ¼ ð1� 2mjÞwj

;r � /j
;rz � zwj

;rz ð4Þ

where jj ¼ 3� 4mj; u
j
r; u

j
z denote the components of the displace-

ment vector, rj
zz;rj

rz are the components of the stress tensor and
the superscript j denotes the number of layer, and refer to the sub-
strate if j ¼ nþ 1.

Under the assumption of axial symmetry, the harmonic poten-
tials wi and /i can be expressed as the Hankel transform of four un-
known arbitrary functions (Yu et al., 1990) Ai

1ðkÞ;A
i
2ðkÞ;A

i
3ðkÞ;A

i
4ðkÞ.

The potentials in each layer i, for ðr; zÞ 2 ½0;þ1½�½zi�1; zi�, are gi-
ven by:

wiðr; zÞ ¼
Z 1

0
Ai

1 coshðkðz� zi�1Þ þ Ai
2 sinhðkðz� zi�1ÞÞ

� �

� J0ðkrÞ
sinhðkðzi � zi�1ÞÞ

dk ð5Þ

/iðr; zÞ ¼
Z 1

0
Ai

4 coshðkðz� zi�1ÞÞ þ Ai
3 sinhðkðz� zi�1ÞÞ

� �

� J0ðkrÞ
k sinhðkðzi � zi�1ÞÞ

dk ð6Þ

where sinhð Þ and coshð Þ are the hyperbolic sine and cosine func-
tions and J0 is the Bessel function of first kind of order zero.

For the substrate, the expressions for the potentials are:

wnþ1ðr; zÞ ¼
Z 1

0
A5ðkÞ expð�kðz� znÞÞJ0ðkrÞdk ð7Þ

unþ1ðr; zÞ ¼
Z 1

0
A6ðkÞ expð�kðz� znÞÞ

J0ðkrÞ
k

dk ð8Þ

It may be seen that the expressions for the potentials in (6)–(8) en-
sure that stresses and their derivatives vanish in the layers for z > 0
if r !1 and in the substrate for r > 0 if z!1.

The boundary conditions between two successive layers i and
iþ 1 are described either as a perfect bonding or as frictionless
sliding.

Perfectly bonded layers impose the continuity of displacements
and surface tractions (hence continuity of stress components zz
and rz) at the respective interface:

ui
zðr;hÞ ¼ uiþ1

z ðr;hÞ ð9Þ
ui

rðr;hÞ ¼ uiþ1
r ðr;hÞ ð10Þ

ri
zzðr;hÞ ¼ riþ1

zz ðr;hÞ ð11Þ
ri

rzðr;hÞ ¼ riþ1
rz ðr;hÞ ð12Þ

Frictionless sliding between layers imposes the continuity of nor-
mal components of displacement and surface tractions and the
vanishing of tangential surface traction:



Fig. 1. Indentation of a multilayer.

Fig. 2. Axisymmetric Indenters: (i) flat punch, (ii) spherical cap, (iii) conical indenter and (iv) blunted conical indenter.
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ui
zðr;hÞ ¼ uiþ1

z ðr; hÞ ð13Þ
ri

zzðr; hÞ ¼ riþ1
zz ðr;hÞ ð14Þ

ri
rzðr; hÞ ¼ riþ1

rz ðr;hÞ ¼ 0 ð15Þ

The boundary conditions for the upper surface z ¼ 0 express: (a) the
traction-free surface for a 6 r 61, (b) the frictionless contact be-
tween the rigid indenter and the first layer, and (c) the fact that
the tangential component of the surface traction is zero every-
where. These conditions are given by:

u1
z ðr;0Þ ¼ d� dðrÞ ð0 6 r 6 aÞ ð16Þ

r1
zzðr;0Þ ¼ 0 ða 6 r 61Þ ð17Þ

r1
rzðr;0Þ ¼ 0 ð0 6 r 61Þ ð18Þ

where d denotes the penetration depth, dðrÞ the indenter shape and
a is the radius of contact.

The corresponding symbolic computations in Mathematica
(Wolfram. S) of the preceding equations and their deduction are
provided in the supplementary resources provided with the paper
(see file TransferMatrix.nb).
3. Method of solution

The solution of the indentation problem in terms of the Papko-
vich–Neuber potentials (and hence elastic displacements and
stress fields) requires the determination of the 4nþ 2 unknown
functions: Ai

1ðkÞ;A
i
2ðkÞ;A

i
3ðkÞ;A

i
4ðkÞ i ¼ 1;n for the layers and A5ðkÞ

and A6ðkÞ for the substrate. The equations relating the unknown
functions are only the interface conditions between the layers
and the contact and free surface conditions at the upper surface
of the multilayer.

The solution method relies on the three steps originally de-
scribed in Yu et al. (1990): (i) the transformation of the contact
Eq. (16) into two integral equations in terms of function A1

1ðkÞ,
the contact radius a and an auxiliary function gðkÞ. The principal
unknowns of the problem will be related to A1

1ðkÞ. (ii) The construc-
tion of gðkÞ from the interface conditions between layers and (iii)
the determination of A1

1ðkÞ as the solution of two integral equations
defined in (i) using the method proposed by Lebedev and Uflyand
(1958).

The contact boundary conditions (16) and (17) can be rewritten
as the following set of integral equations
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Z 1

0
hðkÞJ0 krð Þdk ¼ f ðrÞ ð19Þ

Z 1

0

hðkÞ
1� gðkÞ kJ0 krð Þdk ¼ 0 ð20Þ

where the following notations have been introduced

hðkÞ ¼ A1
1ðkÞ

sinhðkh1Þ
ð21Þ

f ðrÞ ¼ l1

1� m1
d� d rð Þð Þ ð22Þ

gðkÞ ¼ 1� A1
1ðkÞ

A1
4ðkÞ � 2 1� m1ð ÞA1

2ðkÞ
ð23Þ

The condition of the tangential component of traction, Eq. (18), van-
ishing at the surface permits to establish the following equality:

A1
3ðkÞ ¼ 1� 2m1ð ÞA1

1ðkÞ ð24Þ

so that A1
3 can be eliminated.

Let us further denote by fAig and fAnþ1g the vector of unknown
functions corresponding to layer i and to the substrate,
respectively:

Ai
h i

¼ Ai
1 Ai

2 Ai
3 Ai

4

h iT
i ¼ 1;n ð25Þ

Anþ1
h i

¼ A5 A6½ �T ð26Þ

The symbolic algebraic computation of the displacements and
stresses for different interface conditions shows that for both cases
of sliding and perfectly bonded layers, the relationships between
them take the form of linear expressions that can be condensed
into the following matrix equations:

Ai
h i

¼ I iþ1½ � Aiþ1
h i

i ¼ 1; n ð27Þ

An� �
¼ Inþ1½ � Anþ1

h i
ð28Þ

Here I iþ1½ � and Inþ1½ � are the square (4 x 4) and the rectangular (4 x
2) transfer matrices that transmit the ‘‘elastic information’’ from
one layer to the next. The coefficients of these matrices are rational
functions formed by the combinations of sinhðkÞ; coshðkÞ; J0ðkÞ; . . .

and the elastic moduli of the layers and their thickness. The expres-
sion of displacements and stresses conducting to the transfer matri-
ces are computed symbolically in the supplementary Mathematica
file TransferMatrix.nb provided with the paper. For a similar
discussion of transfer matrixes in the elastic analysis of layered sol-
ids see for example (Bahar, 1972; Wang et al., 2002; Yue and Yin,
1998).

As a consequence, Ai
h i

, the unknown functions for layer i are re-
lated to the functions for the substrate Anþ1

h i
by:

Ai
n o

¼
Ynþ1

k¼iþ1

I k� �
Anþ1
h i

: ð29Þ
Table 1
Functions dðrÞ and FðsÞ for different shape indenters.

Indenter dðrÞ

Flat punch 0

Spherical indenter r2

2R

Cone r coth

Blunted conical indenter r2

2R ifr 6 b
b
R ðR� b

2Þ ifr > b

(

In particular, the functions for the surface layer i ¼ 1 are given by:

A1
n o

¼
Ynþ1

k¼2

I k� �
Anþ1
h i

ð30Þ

The interface conditions expressed in Eq. (30), together with the
tangential traction-free condition at the surface (24) result in a sys-
tem of five equations and six unknowns. It is easy to show that the
system has a solution in terms of A1

1, and that A1
2 and A1

4 are propor-
tional to A1

1. Therefore

gðkÞ ¼ 1� A1
1ðkÞ

A1
4ðkÞ � 2 1� m1ð ÞA1

2ðkÞ
ð31Þ

is a function that can be readily evaluated, as it depends only on the
properties of the layers and the parameter k.

In the case of a single layer over a substrate ðn ¼ 1Þ, the explicit
expression for g could be derived analytically. The expression was
first given in Yu et al. (1990). Thanks to the availability of symbolic
algebra packages, several errors were found in that expression, and
were corrected in Korsunsky and Constantinescu (2009).

In the case of the multilayer coating discussed here (n > 1) it is
still possible to perform the derivations analytically. However, due
to the size and complexity of the expression sought, and the need
to eliminate errors in the working, a symbolic algebra computer
package was used for the derivation. This step has been split into
three operations. (i) The expressions for the interface boundary
conditions were obtained by symbolic manipulation of the Papko-
vich–Neuber potentials, and closed form expressions of I k

� �
were

computed. (ii) Taking the properties of the two layers surrounding
each interface, expressions for matrices I k

� �
were derived as a

function k. In preparation for numerical calculations, these matrix
functions were stored in ‘‘compiled’’ form, meaning that derivation
did not require repeating. (iii) The matrix product

Qnþ1
k¼2 I k� �

was
computed. (iii) Finally, function g was defined as the solution of
system (30).

The solution of the integral Eq. (20) was then constructed fol-
lowing the method of Lebedev and Uflyand (1958) and the proce-
dure presented in Yu et al. (1990) and Korsunsky and
Constantinescu (2009). The solution hðkÞ ¼ A1

1ðkÞ= sinhðkh1Þ is
sought in the form:

hðkÞ ¼ 1� gðkÞð Þ
Z a

0
/ðtÞcosk t dt ð32Þ

which is equivalent to writing:

A1
1ðkÞ ¼ ½1� gðkÞ� sinhðkh1Þ

Z a

0

2l1d
pð1� m1Þ

Hðt=aÞ cosðktÞdt ð33Þ

with the unknown function H related to / by:

Hðt=aÞ ¼ pð1� m1Þ
2l1d

/ðtÞ ð34Þ

According to the proof given in Lebedev and Uflyand (1958), H is the
solution of the Fredholm equation of the second kind:
FðsÞ E�

0 P
2da

1� a2s2

Rd 3P
4

1
Rd3

� �1
2

1� p
2

as
d coth pP

2d2 coth

1� a2s2

2R coth

� a2s2

bd coth 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

a2s2

q
þ b

as arcosð b
asÞ

� �8<
:

pP
2d2 coth
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HðsÞ � 1
p

Z 1

0
Mðy; sÞHðyÞdy ¼ FðsÞ; ð0 6 s 6 1Þ; ð35Þ

where s ¼ t=a 2 ½0;1� is the normalized radial coordinate within the
contact circle. The right hand side F depends only on the total
indentation depth and the indenter shape:

FðsÞ ¼ 1� as
d

Z p=2

0
d0ðas sin hÞdh: ð36Þ

and the kernels M and K are given by Yu et al. (1990):

Mðy; sÞ ¼ Kðyþ sÞ þ Kðy� sÞ ð37Þ

KðuÞ ¼ a
h1

Z 1

0
g

w
h1

� �
cos

auw
h1

� �
dw; ð38Þ

where h1 denotes the thickness of the first layer. The kernel Mðy; sÞ
depends on the elastic properties and thickness of the layers and
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the substrate through the function g, and on the contact radius a.
After some symbolic manipulations, the kernel M is expressed in
the equivalent form:

Mðy; sÞ ¼ 2
a
h1

Z 1

0
g

w
h1

� �
cos

ayw
h1

� �
cos

asw
h1

� �
dw; ð39Þ

In order to streamline the computation of g for arbitrary values
of its argument, it is best to define it as a compiled function in
Mathematica. Then the kernels K and M need to be evaluated by
integration over ½0;1�. Two difficulties that arise concern the infi-
nite integration interval and the highly oscillatory nature of the
integrand. By examining the expression for K and through exten-
sive numerical experiments for a wide range materials, we found
that the thickness of the first layer h1 appears to be the factor that
determines the necessary range of integration, and that adequate
estimates of g are obtained by integration over the interval 0; 5

h1

h i
.

.50 1.00 5.00 10.00
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1 10
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d Layers
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Several quadrature techniques were tested in order to sum cor-
rectly the oscillatory integrand. Namely, Gauss–Legendre Quadra-
ture, Fourier Cosine Transform and the standard numerical
integration operators in Mathematica were tested. We concluded
that, with correct choice of the support of g, the Gauss–Legendre
Quadrature provided the best trade-off between speed and accuracy.

The integral Eq. (35) H is solved using a Gauss–Legendre discret-
ization that represents it as the linear system:

M�½ �: Hf g ¼ Ff g ð40Þ

More precisely:

M�
ij ¼ dij �

1
p

wi Kðxi þ xjÞ þ Kðxi � xjÞ
	 
	 


ð41Þ

Hf gj ¼ HðxjÞ
Ff gj ¼ FðxjÞ

(
i; j ¼ 1; ng ð42Þ
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where wi denotes the weight assigned to the function value at the
Gauss point xi, and ng is the number of Gauss points or equivalently
the degree of the Legendre polynomial.

Thus, a solution H can be found from (35) for any value of a.
However, a question about determining the contact radius a may
remain outstanding. Two cases can be distinguished: either a is gi-
ven and fixed, as e.g. in the case of a flat punch; or, as e.g. for a
spherical cap, the value of a is unknown a priori. In this case, how-
ever, the condition of continuous variation of stresses at the layer
surface can be imposed. The requirement that the surface tractions
fall to zero at the edge of the contact zone is expressed as:

rzzða;0Þ ¼ 0

From the expression for the stresses given in Lebedev and Uflyand
(1958):
1 10

ion depth

d Layers

ft hard

ard soft

pth for perfectly bonded bi-layer indented by a spherical cone.

1 10 100

t radius

d Layers
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rzzðr;0Þ ¼
Z a

r

/0ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2
p dt � /ðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � r2
p when r < a: ð43Þ

where /ðxÞ ¼ sinhðkh1Þ 2l1d
pð1�m1Þ

Hðx=aÞ, one can rewrite the continu-
ity condition as:

/ðaÞ ¼ 0 or Hð1Þ ¼ 0 ð44Þ

For a given value of d function Hða;dÞ appears to be a monotonic
function of a. Therefore we employ dichotomy for numerical evalu-
ation of the contact radius a.

The numerical algorithm performs the following iterative steps:

1. Select a trial value of the contact radius a;
2. Compute H as a function of a by solving the integral Eq. (35);
3. Check the continuity of normal surface traction at the edge of

the contact circle, and correct the contact radius a.
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b ¼ 0:01;0:1;1.
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Fig. 8. Evolution of the apparent contact modulus with respect to the relat
The total indentation load is obtained by integrating the pres-
sure distribution under the indenter, as given by

P ¼ 4ad
l1

1� m1

Z 1

0
HðsÞds: ð45Þ

Finally, let us define the apparent contact modulus for the coating
system by:

E� ¼ P
2daHðdÞ

Z 1

0
FðsÞds

� ��1

ð46Þ

where aHðdÞ denotes the contact radius as function of the displace-
ment d for the homogenous substrate (for a series closed-form
expressions for aHðdÞ for different indenter shapes see Korsunsky
and Constantinescu (2009)).
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The complete numerical programming of the integration ago-
rithm using the Mathematica as well as an example file are pro-
vided in the supplementary material (see files
MultiLayerIndentation.m and ExampleIndentation.nb

respectively).

4. Results and discussion

In a preliminary step, the accuracy and efficiency of the above
computing method were verified by comparison of the results with
some well-known analytical solutions for the indentation of the
homogenous half-plane (Sneddon, 1965) and the indentation of a
layer bonded to a dissimilar substrate (Korsunsky and Constantine-
scu, 2009; Li and Chou, 1997). The program was also used with an
arbitrary number of layers with the same elastic properties resting
on a similar and dissimilar elastic substrate.
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Fig. 10. The apparent contact modulus versus relative indentation
The solution procedure was then applied for the indentation of
a multilayered solid consisting of n dissimilar thin films on an elas-
tic half-space, as shown in Fig. 1. Several indenter shapes were con-
sidered: flat punch, spherical cap, conical indenter and a blunted
conical indenter (see Fig. 2). The corresponding functions dðrÞ giv-
ing the shape and the functions FðsÞ representing the right hand
side of the Fredholm equation are reported in Table 1.

The Figs. 3–10 illustrate the evolution of the apparent contact
modulus with respect to the relative indentation depth, i.e. the in-
denter penetration normalized by the thickness of the top layer
film. The evolution of the apparent contact modulus obtained from
the indentation result is represented with a continuous line,
wether the evolution of the real Young’s modulus is represented
using a dashed line.

The first example considered is the indentation with a conical
punch of a Al/SiC multilayer laminate deposed on Si (111) single-
0.50 1.00 5.00 10.00

entation depth

pth for perfectly bonded 4-layer indented by a spherical punch.
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ct Radius

depth for perfectly bonded 4-layer indented by a flat punch.



Table 3
Young modulus and Poisson’s ratio for the the S-H-S and H-S-H multilayers
configurations.

Film 1 Film 2 Film 3 Film 4 Substrate

H–S–H E (GPa) 150 180 30 200 110
m 0.3 0.2 0.25 0.2 0.3

S–H–S E (GPa) 150 180 500 200 110
m 0.3 0.2 0.25 0.2 0.3
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crystal substrate (Tang et al., 2009). The elastic properties are
(EAl ¼ 65 GPa;mAl ¼ 0:33) for the Al film, (ESiC ¼ 277 GPa;mAl ¼ 0:17)
for the SiC layer and (Ef ¼ 187 GPa;mf ¼ 0:28) for the substrate.
Fig. 3 shows the variation of the apparent contact modulus for a mul-
tilayer composite of n layers (n 2 f1;4;7g), Al always being the top
(first) layer.

Some features may be observed. For instance, we distinguish
two limiting states: (i) for a very small prescribed displacement
d, the apparent contact modulus approaches the plane strain mod-
ulus of the first layer; (ii) when the load is large enough, E� ap-
proaches the modulus of the substrate. In the intermediate
region, the contact radius increases with the applied load and the
region of significant deformation gradually extends across the
sub-layers and into the substrate. On can also remark that transi-
tion between the two limiting states is accelerated with the
decreasing number of layers n, an intuitively anticipated effect.

Figs. 4–6 illustrate the variation of the apparent contact modu-
lus for a perfectly bonded bi-layer indented by a conical, spherical
and flat indenter respectively. Purely for the purposes of shorthand
terminology, below we will use ’’hard’’ and ’’soft’’ to refer to ’’stiff’’
and ’’compliant’’ materials. Since the entire analytical treatment
presented here concerns elastic processes, no plastic deformation
is implied. A hard coating on a soft substrate and the reverse are
considered with the following parameters: ðE1 ¼ 700 GPa;
m1 ¼ 0:3Þ; ðE2 ¼ 200GPa;m2 ¼ 0:25Þ; ðEf ¼ 100GPa;mf ¼ 0:2Þ. Since
the flat punch has a fixed contact radius that is independent of
the indentation depth, the apparent contact modulus is constant
for a given contact area. In the present work the contact radius
was normalized by the thickness of first layer. As a consequence
one can now plot the evolution of the apparent contact modulus
versus the relative contact radius instead of the relative indenta-
tion depth. As for the other indentor shapes, it can be observed that
the apparent contact modulus evolves from the modulus of the
first layer for the small load d (small contact radii for flat punch)
to the modulus of the substrate (under sufficiently large applied
load and relative indentation depth). An inspection of the transi-
tion region in different figures allows to asses that the extent of
this zone depends on the type of the indenter. Finite numerical
accuracy causes the fluctuation of the computed contact modulus
at high contact radii (see Fig. 6). This can be reduced using a greater
number of integration points in the Gauss–Legendre quadrature.

Let us now consider the indentation of a multilayer with a
blunted cone, which is closer to reality as perfectly sharp indenters
do not exist. A simple inspection of the asymptotic expression of
the function FðsÞ in Table 1 for the blunted cone shows that for
small contact zones, F is identical with that for a spherical indenter
with radius R ¼ cotðaÞ=b, while for great value of the contact region
F is close to the one created by a cone. In Fig. 7, we display the var-
iation of contact modulus of a multilayer composed of 4 bonded
films indented by a cone and several blunted cones with blunt spot
radii b 2 f0:01;0:1;1g. The elastic properties are listed in Table 2.

Noteworthy is the large overprediction of the apparent contact
modulus induced by the use of blunted indenters for shallow in-
denter penetration. The figure clearly indicates a significant diver-
gence between the results of the perfect sharp cone and blunted
indenters even for very small degrees of blunting.

Let us now consider bilayers where a very compliant or a very
stiff thin film is located between the substrate and the top layer.
Table 2
Elastic properties of a coating composed of 4 sub-layers over an elastic substrate
indented by a conical and a blunted conical punch.

Layer 1 Layer 2 Layer 3 Layer 4 Substrate

E (GPa) 300 200 180 150 110
m 0.33 0.28 0.25 0.2 0.17
The first configuration is denoted by S–H–S and the second one
by H–S–H. Figs. 8–10 display the results of the indentation of mul-
tilayered solid containing 4 bonded films by a spherical, conical
and flat rigid stamps, respectively. The elastic properties are re-
ported in Table 3.

It can be seen that the values of the contact modulus are evolv-
ing as expected from that of the first layer for very small depths to
the value of substrate’s modulus for large indentations depth. In
the transition zone, the curves show peak values of the apparent
contact modulus for S–H–S configuration and a minimum for the
H–S–H case. The results further show that the magnitude of the
extremum values and the extent of the transition zone depend
on the indenter shape.

5. Conclusion

The present paper introduced a semi-analytical solution proce-
dure of the axisymmetric and frictionless indentation problem of a
multi-layered half-space. A transfer matrix approach was used in
order to capture the boundary conditions between the elastic sol-
ids from the top sub-layer to the substrate. The problem was then
reduced to a Fredholm integral equation of the second kind defined
on the contact patch, and stress and displacement continuity con-
dition. The solution was implemented in Mathematica, giving a fast
and efficient symbolic/numerical code (TransferMatrix.nb,
MultiLayerIndentation.m, ExampleIndentation.nb) pro-
vided with the paper.

The method of solution can also be applied for a large wide
material combinations, for arbitrary thickness of the sub-layers
spanning from nano to macro scale, and for a large spectrum of
indentation loads exerted by different kinds of indenters.

A common feature of all the above examples is that, for very
shallow indentation, the apparent contact modulus approaches
the value of the top sub-layer, while for very large indentation
loads, it converges toward the substrate’s modulus. The extent of
the transition zone between these two asymptotic cases depends
on the indenter shape and the elastic properties of the layers.
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